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Abstract. We continue with last week’s introduction to hyperbolic geometry and hyperbolic structures
on three-manifolds. In particular, we explain how ideal triangulations can be used to compute
hyperbolic structures and hyperbolic volumes for knot complements, illustrating this method for the
figure-eight knot complement.

1 Computing hyperbolic structures

Given a knot K in the three-sphere S3 = R3 ∪ {∞}, we saw last week that asides from a few cases, its
knot complement S3 \ K may be endowed with a unique complete finite-volumed hyperbolic structure.
This hyperbolic structure and its corresponding volume are knot invariants for K and may be obtained
in the following step:

1. Find a topological decomposition of M = S3 \ K into ideal tetrahedra – topological tetrahedra
without their vertices.

2. Appropriately specify the geometry for these ideal tetrahedra in H3 so that they assemble
correctly to give the unique complete hyperbolic structure on M.

3. Compute and sum the volume of these ideal tetrahedra.

We now explain in detail various points of this procedure, demonstrating it via the example of the
figure eight knot complement.

2 Topological decomposition

For our purposes, we will defer the description of the triangulation procedure to section 3 of Jeffrey
Weeks’ chapter in the Handbook of knot theory. His algorithm implemented in SnapPea and results in
the decomposition of the figure eight knot described below. See Thurston’s Princeton Notes or Book
for other nice examples, e.g. Whitehead link, Borromean rings.

We begin by adding a red and a blue edge joining sections of the figure eight knot K in S3 = R3 ∪ {∞},
we obtain the following 1-dimensional CW-complex L:
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A D BC

Now take four additional 2-cells labelled A, B, C and D, and glue them along their boundaries so that
these boundaries lie on L. We describe this in the left figure below, taking care to specify that region C
also includes a point at infinity. In particular, this point at infinity compactifies the resulting 2-complex
so that it is homotopy equivalent to a 2-sphere, thereby cutting S3 into two open 3-balls11. Moreover,
the figure on the right illustrates what can be seen from one of these 3-balls.

When we endow M with the necessary geometric structure to give it a complete finite volume
hyperbolic structure, the knot K disappears into the ideal points at the cusps of M. Therefore, by
looking carefully at the pattern of faces on the boundary of the two aforementioned 3-balls and
removing the edges along the knot, we obtain the following triangulation for M:

D

A
B

C
C’

A’ B’

D’

The edges of these two tetrahedra fit together in two groups of 6 partitioned by colour. Consider a
regular ideal tetrahedron in H3, with all its vertices on the sphere at infinity. This has all dihedral
angles 60 degrees.

1This is analogous to how a great circle S1 cuts up S2 into two open 2-balls.
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Taking two regular ideal tetrahedra and gluing their faces together by isometries then gives a hyperbolic
structure on X. We now show that this is precisely the unique complete finite volumed hyperbolic
structure on M.

3 Parametrizing ideal tetrahedra in H3

An hyperbolic ideal tetrahedron is the hyperbolic convex hull of four points {v1, v2, v3, v4} in ∂H3 =

S2 = C∪ {∞}; since there exists a unique22 Möbius transformation g ∈ PSL2(C) = Aut(H3) taking

v1 7→ ∞, v2 7→ 0, v3 7→ 1,

the image of the fourth point, g(v4) ∈ S2 \ {0, 1, ∞} = C \ {0, 1}, uniquely specifies a hyperbolic ideal
tetrahedron up to orientation preserving isometry. Viewed in the upper half space model, a hyperbolic
ideal tetrahedron resembles:

The intersection of any sufficiently small horosphere centred at ∞ with the above tetrahedron yields
similar triangles and this in turn motivates an alternate way to specify an (hyperbolic) ideal tetrahedron:

2The existence and uniqueness of this function is left as an exercise.
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by measuring the angles of the corners of such a horocyclic triangle. These angles α, β, γ are the dihedral
angles to the corresponding edges of our ideal tetrahedron and we can use the fact that α + β + γ = π

to establish the following:

Exercise 1. Show that opposite edges in an ideal tetrahedron have the same dihedral angles.

Going back to our first method of specifying the geometry of our ideal tetrahedron, we associate
z = g(v4) to the edge from 0 to ∞ and note that this is the cross ratio of v1, v2, v3 and v4. We then
respectively associate to the edges over z and 1 the complex parameters z′ and z′′ in a similar fashion.
Observe that the affine Möbius transformation rotating anti-clockwise about 0 and resizing the edge
between 0 and 1 to that between 0 and z is given by:

g1 : x 7→ z · x.

Then, the affine map taking the edge between 0 and z and rotating it anti-clockwise about z and
resizing the edge to that between 1 and z is given by:

g2 : x 7→ z′ · x− zz′ + z.

Since 0 7→ 1 = −zz′ + z under this map, we see that z′ = z−1
z .

Similarly, the affine map taking the edge between 1 and z and rotating it anti-clockwise about 1 and
resizing the edge to that between 0 and 1 is given by:

g3 : x 7→ z′′ · x− z′′ + 1.

Like before, this tells us that z′′ = 1
1−z .

Observe that these parameters satisfy zz′z′′ = −1. This should not be surprising, since we know that
g3 ◦ g2 ◦ g1 takes the form: x 7→ zz′z′′x + c and that the composition gives an affine transformation
reversing the direction of the edge between 0 and 1. Furthermore, by noticing that the dihedral angle
of an edge is the argument of its complex parameter, we can use Exercise 1 to show that the complex
parameter associated to opposite edges are the same:

�
�� ��

���

��

The above parameterisations tell us that there is a complex 1-dimensional parameter space for ideal
tetrahedra, and one immediate consequence is that there is essentially no freedom in how we glue
together two hyperbolic ideal tetrahedra if we want edges to match up correctly. We now phrase last
week’s gluing conditions for obtaining a hyperbolic structure from a topological ideal triangulation in
terms of this complex parametrisation.
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4 Gluing conditions to obtain a hyperbolic structure

4.1 Edge gluing condition(s)

Given n ideal tetrahedra with complex edge parameters z(e), the first gluing condition says that we
want the dihedral angles around each edge to sum to 2π and that when glued together, there should be
no translation along the edge as one travels around it. This is equivalent to asking that the Euclidean
horospherical triangles around each edge fit together:

z(e1)z(e2)

z(e3) z(ek).....

Again, by thinking of z(ei) in terms of an affine rotate and resize map, we see that

z(e1)z(e2) · · · z(ek) = 1 and arg z(e1) + arg z(e2) + . . . + arg z(ek) = 2π

We stress that the angle sum is 2π, not 4π, 6π, . . . and presently consider the example of the figure
eight knot complement to illustrate this condtion.

z’’

z’ z

z’

z’’

z

w’’

w’’

w’ w

w

w’

For the figure eight knot complement as drawn above, the respective edge equations for the blue and
red edges are:

z2z′w2w′ = 1, z′(z′′)2w′(w′′)2 = 1,

expressing z′, z′′, w′ and w′′ in terms of z and w yields:

zw(1− z)(1− w) = 1

z−1w−1(1− z)−1(1− w)−1 = 1.
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These equations are equivalent, so there is a complex 1-dimensional solution space for this polynomial
in C2. The Prosad-Mostow rigidity theorem tells us that precisely one solution in this family will give
a complete finite volume hyperbolic metric on our figure eight knot complement. The other solutions
may also glue together correctly, but yield incomplete hyperbolic structures - which leads us to the
second gluing condition:

4.2 Completeness condition

Recall now that the completeness condition tells us that the horospherical triangles of our ideal
triangulation must glue together to give an Euclidean torus T that bounds a tubular neighbourhood of
our knot K. Consider the developing map from the universal cover of the torus to T

π : T̃ = R2 → T,

since the horospherical triangulation on T ⊂ M decomposes it into Euclidean triangles, we may lift
this triangulation information to obtain a tiling of T̃.
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Given a simple closed loop γ on T, consider a lift γ̃ of γ starting at an intersection point between γ

and an edge e of the horospherical triangulation of T. Let {ẽi}i=0,...,n be the set of edges we intersect as
we traverse along γ̃. We know from construction that ẽ0 and ẽn are both lifts of e and let the following
sequence of affine transformations

{x 7→ zi · x + ci}i=1,...,n

respectively rotate and resize the edge ẽi−1 to ẽi. Since ẽ0 and ẽn are parallel, the compositions of these
transformations must take the form x 7→ x + c, thereby telling us that

n

∏
i=1

zi = 1.

Now, since each of these zi is either a complex edge parameter associated to an edge or its reciprocal,
we obtain two relations for our edge parameters from the longitude and meridian of T. The relation
obtained from any two loops representing the same homotopy class are the same33, and since the

3Since we’re concerned with the case that T is flat, holonomy is the same as monodromy. However, should one wish to consider
this picture for a non-Euclidean cuspoidal surface - such as in the incomplete case, holonomy should be employed.
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fundamental group of T is Z ⊕ Z generated by the longitude and meridian, these are the only
(potentially) new relations that we can obtain via this method. By applying this argument to the figure
eight knot complement, we get that:

h(l) = z2(1− z)2 = 1, and h(m) = w(1− z) = 1,

where h(l) and h(m) denote the respective holonomies of the longitude and the meridian. Combining
this with our previous relations yields the unique solution (with Im(z), Im(w) > 0) of

z = w = exp(
iπ
3
) =

1 +
√
−3

2

as being the geometric parameters we need to obtain a complete hyperbolic structure on M. (Note that
we expect this uniqueness due to Mostow-Prasad Rigidity!)

4.3 Computing hyperbolic volume

We finish off by describing three ways of representing the volume of an ideal tetrahedron given its
geometry. Let ∆(z) be an ideal tetrahedron in H3 with complex parameter z ∈ C and dihedral angles

α = arg(z), β = arg(
z− 1

z
) and γ = arg(

1
1− z

).

For our first method, by explicitly integrating the hyperbolic volume element, we obtain that:

Vol(∆(z)) = Λ(α) + Λ(β) + Λ(γ),

where

Λ(θ) = −
∫ θ

0
| log(2 sin t)| dt

is the Lobachevsky function (See [Milnor]). Here’s its graph:
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Graph of Lobachevsky function for −π ≤ θ ≤ π
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Using this, we numerically compute the volume of the complete hyperbolic structure on the figure
eight knot complement to be 6Λ(π/3) ≈ 2.0298.

Exercise 2. Prove that the regular ideal tetrahedron is the unique tetrahedra in H3 of maximal volume
(≈ 1.0149...). [Hint: Maximize Λ(α) + Λ(β) + Λ(γ) subject to the constraint α + β + γ = π.]

For our second method, notice that this volume can also be expresse nicely in terms of the dilogarithm
function

Li2(z) =
∞

∑
n=1

zn

n2 = −
∫ z

0

log(1− w)

w
dw, for |z| ≤ 1.

Making a change of variable w = e2iθ in the last integral, then taking the imaginary part gives

Λ(θ) =
1
2

Im Li2(e2iθ) =
1
2 ∑

sin(2nθ)

n2 for all θ.

Lastly, the Bloch-Wigner dilogarithm function

D(z) = Im Li2(z) + log |z| arg(1− z)

turns out to be a well-defined real analytic function on C− {0, 1}. It follows from an identity of
Kummer implies that

D(z) = Λ(α) + Λ(β) + Λ(γ).

Thus,
Vol(∆(z)) = D(z).

5 Some references

J. Weeks, Computation of hyperbolic structures in knot theory, (I don’t know how to cite Arxiv...well, either
Arxiv or a proper book...?)
Available online at http://arxiv.org/abs/math/0309407http://arxiv.org/abs/math/0309407.

W. Thurston, The Geometry and Topology of Three-manifolds, Princeton University lecture notes, 1980.
Available online at http://library.msri.org/books/gt3mhttp://library.msri.org/books/gt3m.

W. Thurston, Three-Dimensional Geometry and Topology, Princeton University Press, 1997.

J. Milnor, Hyperbolic geometry: the first 150 years, Bulletin of the AMS 6 (1982), 9–24.

W. Neumann and D. Zagier, Volumes of hyperbolic three-manifolds, Topology 24 (1985), 307–332.

8

http://arxiv.org/abs/math/0309407
http://library.msri.org/books/gt3m

	Computing hyperbolic structures
	Topological decomposition
	Parametrizing ideal tetrahedra in H3
	Gluing conditions to obtain a hyperbolic structure
	Edge gluing condition(s)
	Completeness condition
	Computing hyperbolic volume

	Some references

