
Volume Conjecture Seminar 2

Hyperbolic volumes of knot complements I

Craig Hodgson

15 August 2011

Abstract. We will begin with a brief introduction to hyperbolic geometry and hyperbolic structures on
three-manifolds. We will then explain how ideal triangulations can be used to compute hyperbolic
structures and hyperbolic volumes for knot complements, illustrating this method for the figure-eight
knot complement.

0 Motivation

Throughout this talk, we will take K to be a knot in the three-sphere S3 = R3 ∪ {∞}. We consider the
non-compact three-manifold S3 \ K and refer to it as the knot complement. It is known from the work of
Gordon and Luecke that the topology of the knot complement completely determines the knot up to a
homeomorphism of S3. Therefore, any topological invariant of the knot complement is an invariant
of the corresponding knot. In particular, a consequence of the following theorem is the fact that the
volume of the complement of a hyperbolic knot is a knot invariant. Recall that a hyperbolic knot is one
whose complement admits a hyperbolic structure — that is, a complete metric of constant curvature −1.

Theorem (Thurston, late 1970s). Most knots — more precisely, those which are not torus knots or satellite
knots — are hyperbolic.11

A manifold which possesses a metric of constant curvature −1 can be locally modelled on hyperbolic
space Hn. For our purposes, we only need to consider the cases n = 2 and n = 3.

Theorem (Mostow–Prasad Rigidity). A hyperbolic knot complement has a unique hyperbolic structure up to
isometry.

More precisely, the above result is a corollary of Mostow–Prasad Rigidity, which states that the
geometry of a finite-volume hyperbolic manifold of dimension greater than two is uniquely determined
by its fundamental group. The key point here is that geometric properties derived from this unique
hyperbolic structure — such as the volume — are topological invariants of S3 \K and hence, topological
invariants of K.

1 Some hyperbolic geometry

We first introduce the upper half-space model for the hyperbolic space H3. The underlying set for the
model is {(x, y, z) ∈ R3 | z > 0}, endowed with the Riemannian metric

ds =
√

dx2 + dy2 + dz2

z
.

1Recall that a torus knot is one which lies on the surface of an unknotted torus. A satellite knot is one which is obtained by taking
a knot lying non-trivially inside a solid torus and then knotting the solid torus.
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We calculate the length `(γ) of a path γ : [a, b]→H3 with γ(t) = (x(t), y(t), z(t)) in this metric using
the integral

`(γ) =
∫ b

a

√
x′(t)2 + y′(t)2 + z′(t)2

z(t)
dt.

We will often consider the boundary ∂H3 of H3 topologically as a sphere in the following way.

{(x, y, z) | z = 0} ∪ {∞} = R2 ∪ {∞} = C∪ {∞} = S2

This is also known as the sphere at infinity, since the points of ∂H3 are at infinite distance from any
point of H3.

In the upper half-space model, we have the following facts.

Hyperbolic angles are equal to Euclidean angles
The angles measured using the given Riemannian metric on the upper half-space are equal to
the angles measured using the standard Euclidean metric on the upper half-space.

Hyperbolic lines are Euclidean rays and semicircles perpendicular to the boundary.
Note that a hyperbolic line is a complete geodesic in H3. Euclidean rays perpendicular to the
boundary may be thought of as semicircles perpendicular to the boundary with infinite radius
and one endpoint at ∞.

Hyperbolic planes are Euclidean planes and hemispheres perpendicular to the boundary.
Note that a hyperbolic plane is a complete, totally geodesic two-dimensional subspace in H3.

The volume form induced by the Riemannian metric on H3 is given by

dV =
dx dy dz

z3 .

2



2 The Poincaré disk model

It is also sometimes useful to know about the Poincaré disk model for the hyperbolic space H3.

The underlying set for the model is the open unit ball in R3 with Riemannian metric

ds =
2

1− x2 − y2 − z2

√
dx2 + dy2 + dz2,

and the boundary ∂H3 corresponds to the boundary of the ball. We also introduce

polygons, which are two-dimensional regions bounded by hyperbolic lines lying in a hyperbolic
plane; and

polyhedra, which are three-dimensional regions bounded by hyperbolic planes.

We also have a notion of ideal polygons and ideal polyhedra, which are polygons and polyhedra with
their vertices lying on the sphere at infinity.

Ideal polygons and polyhedra are not compact, but have finite hyperbolic area and volume, respectively.
The following exercise may be used to prove this fact for polyhedra, and an analogous exercise suffices
for the case of polygons.
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Exercise. For S ⊆ R2, show that the hyperbolic volume of the set

R = {(x, y, z) ∈H3 | (x, y) ∈ S and z ≥ 1}

in the upper half-space model is equal to half the Euclidean area of S.

3 Isometries of hyperbolic space

Every isometry of H3 extends continuously to the sphere at infinity, and in fact, gives a conformal diffeo-
morphism of ∂H3. This yields a homomorphism φ from the group of orientation preserving isometries
of H3 to the group of Möbius transformations. This group is equal to PSL2(C) = SL2(C)/〈±I〉 via
the isomorphism

f (z) =
az + b
cz + d

7→
[

a b
c d

]
.

We can use the fact that any point in H3 is the intersection of three hyperbolic planes to prove that
the map φ is injective. Moreover, by writing down explicit formulas for how an arbitrary element of
PSL2(C) acts on H3 — for example, by using quaternions — we can show that the map φ is surjective.
Therefore, the group of orientation preserving isometries of H3 is naturally isomorphic to the group of
Möbius transformations.

Isom+(H3) ∼= PSL2(C)

4 Horospheres

Fix a point P ∈H3 and consider a family of Euclidean spheres through P with varying radius. These
are actually hyperbolic spheres with constant positive intrinsic curvature and intrinsic spherical
geometry. In the limit as the radius of the hyperbolic sphere approaches infinity, we obtain a horosphere.
Horospheres have zero intrinsic curvature and intrinsic Euclidean geometry. In the upper half-space
model, they are represented by Euclidean spheres which are tangent to the plane {(x, y, z) ∈ R3 | z =

0} or by Euclidean planes given by the equation z = constant.
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5 Computing hyperbolic structures

The program SnapPea, written by Jeff Weeks, is able to calculate the volume of a specified knot
complement to high precision. It uses a procedure outlined by Thurston for taking a knot and
producing an ideal triangulation of its complement. By an ideal triangulation, we mean a way to divide
the knot complement into tetrahedra whose vertices are ideal. Such a tetrahedron is homeomorphic to
a compact tetrahedron with its vertices removed.

The algorithm to find the hyperbolic structure of a three-manifold can be broken down into two steps.

Use Thurston’s procedure to obtain a topological ideal triangulation of your manifold.

Find hyperbolic structures for these ideal tetrahedra so that they fit together correctly to give a
complete hyperbolic metric on your manifold.

To obtain a complete hyperbolic metric, the hyperbolic ideal tetrahedra obtained from the second step
need to satisfy the following conditions.

Edge condition
The sum of the dihedral angles at each edge is equal to 2π, and when we go around an edge, we
return to the same point rather than a point translated along the edge. Note that this is a local
condition around an edge in the ideal triangulation.

Completeness condition
It must be possible to choose a horospherical triangle around each ideal vertex so that they fit
together to give a closed Euclidean surface. Such surfaces have Euler characteristic zero by the
Gauss-Bonnet theorem, so must be tori — or Klein bottles, in the non-orientable case — whose
Euclidean metrics shrink exponentially fast as you move towards the cusp. Note that this is a
global condition on the way that the ideal tetrahedra are glued together.

To finish, we consider an example of a lower-dimensional analogue of this procedure.

Example. Consider the 0-dimensional submanifold K = {three points} ⊆ S2. There exists a complete
hyperbolic metric on S2 \ K which can be constructed as follows. The basic idea is to topologically
decompose S2 \ K into two ideal triangles. Geometrically, we can take two ideal triangles in H2 and
glue them together by doubling. More precisely, take two ideal triangles with a choice of horocycle at
each of their three cusps. Then glue these triangles together so that the first forms the front of S2 \ K
and the second forms the back.
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