Introduction

This small note is motivated by our desire to understand the behaviour of
holomorphic differentials on (closed) Riemann surfaces. We begin by de-
scribing the construction of a genus g Riemann surface with a holomorphic
differential on it (for any g). And use this as a basis for a heuristic analytic
characterization of holomorphic differentials on Riemann surfaces.

Algebraic curves

It is well-known that any Riemann surface may be embedded in CP™ as a
projective variety, that is: it can be written as the solution set to a homoge-
neous polynomial F(zo,...,zn). In the special case that n = 2, we call the
image of such a Riemann surface a planar curve.

A planar curve X C CP? defined by a degree 3 homogeneous polynomial
F(x,y,z) may be thought of, without loss of generality, as a the solution
set of a degree 3 polynomial f(x,y) = F(x,y, 1) defined over C? . Then the
C-vector space of holomorphic differentials on X is given by:

dx
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O (X) —{p(x,y)af/ay

| deg(p) < d—3}, (1)
where d is the degree of f. You might be worried because 9f/dy can be 0,
and this is resolved by considering the definition of the cotangent bundle
in this context and interpreting this expression as a representative of an
equivalence class of sections.

Riemann surfaces

We now turn to the problem of analytically construction non-trivial holo-
morphic differentials on Riemann surfaces. For the Riemann sphere this is
known to be impossible — there are no such differentials, and for the torus

T=C/(Z+1Z), )

its space of holomorphic forms Q!(T) is one dimensional, and any such
form pulls back, with respect to the universal covering map, to a multiple
of dz over C - the universal cover of T.

Note that removing a closed disk from T results in an open Riemann
surface homeomorphic to the once-punctured torus, and we may define
a family of such tori:

Ts:=(C— |J Bs(m+mni))/(Z+1Z), for s > 0. (3)
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The restriction of a holomorphic differential of T to being over Ts for & < 1
induces an injective morphism

ps : QN(T) = Q'(T), (4)

and it’s fairly easy to see that ps is not surjective. In fact, we’ll presently
show that Q!(Ts) is infinite dimensional.

Weierstrass’s elliptic function p : C — C U{oo} is defined to be:
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Since Weierstrass'’s elliptic function is doubly periodic, that is:
p(z) =p(z+m+ni),
it can be regarded as a meromorphic function on the torus T:
p: T —= CU{ool. (6)

The poles of p are position on Z + iZ, so the restriction of p to Ts is a
holomorphic function. Then,

{o" - p5(QN(T)hkez

are all distinct subspaces of Q(Ts). Henceforth, we’ll intentionally con-
fuse the elements of Q!(T) or Q!(Ts) with the pullbacks to their respec-
tive (Z + iZ)-covers in C. For example, we’ll refer to the elements of
9 - ps(QY(T)) simply as ap(z)dz. Let us now proceed to construct a genus
2 Riemann surface and then to analytically construct a holomorphic dif-
ferential on it.

To begin with, we construct a function ¢ that will be used for constructing
the transition functions of the charts of our Riemann surface. Weierstrass’s
elliptic function p has an order 2 pole at the integer points of C, and its
Laurent series expansion around 0 takes the form:

1
p(z) = 2 +cz? +cazt + ezl + ... 7)

Since p(z)z?* is holomorphic around z = 0, the power series >, coxz?* 2

converges absolutely in closed ball around z = 0 and hence the following

function
C k !
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is well-defined in a sufficiently small neighborhood and satisfies that
¢ 2de = p(z)dz. ©)

Since the derivative of ( is non-zero about z = 0, the domain-restricted
function

(:B(0) = C, (10)

must be a holomorphic embedding for e > 0 sufficiently small. Notice
that ¢(0) = 0, so we may choose numbers €’ > 1 > 0 such that:

By (0) C &(Be(0)) C Ber(0). (11)

Now consider the open Riemann surfaces

S1:=T, and (12)
S,0=(C— |J (m+ni) T '(By))/(Z+iD). (13)
o

We can construct a closed genus 2 Riemann surface S by gluing S; and S,
as follows:

{(z2)
(14)

S:=S51US,/ ~ ,where z; € Sy is identified with z, € S, iff. z; =

Note: we’re basically taking annular neighborhoods around the bound-
aries of S; and S, and identifying them.

The holomorphic differential on S; that takes the form n?dz transforms
to p(z)dz on S, with respect to the transition function thanks to (9): this
gives us a nontrivial holomorphic differential on all of S.

Fluff

Although we’ve only outlined the procedure to obtain a genus 2 Riemann
surface, it’s not too hard to extend these ideas to closed surfaces of ar-
bitrarily high genus. In addition, note that there was some flexibility in
our construction: we could have changed the modulus of either S; or Sy,
and we could have varied 1 and introduced a twist in how we glued S
and Sy by multiplying the identification condtion ~ by a constant e'°. By
doing some analysis involving the ratios of integrals around certain cycles
of S with respect to the differential produced along with it, we should
be able to show that this procedure yields three complex-dimensional set
of surfaces in M. In fact, it’s probably not too much of a stretch to put



this together and conjecture that any genus 2 Riemann surface S can be
expressed as the union of two punctured tori so that there exists a holo-
morphic form on S that takes the form dz on S; and p(z)dz on S;. Of
course, if this were true, then we should probably expect that there’s a
reparametrization of S; and S; such that a linearly independent holomor-
phic form on S takes the form dz on S; and p(z)dz on S;. And if we're
able to show that then we should probably be able to do it for any genus.
So, basically, this should give us a characterization of a basis for Q!(X) in
terms of torus components and Weierstrass'’s elliptic function?

Note: I've looked at the possible arrangements of dz and g(z)dz on a
genus g surface and the linear dependence between them, and it seems
plausible that they’ll generate dimension g vector space. Which is good
news, I guess?



