What do the following quadruples of numbers have in common?

(1,5,24,30), (1,6,14,21), (1,8,9,18), (1,9,10,10),
(23,10,15), (2558), (3.3.6,6), (4.4,44)
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Markoff triples

Markoff triples

A Markoff triple is a triple of numbers (x, y, z) satisfying:

x2 +y2 + 22 = Xyz.
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Markoff triples

Markoff triples

A Markoff triple is a triple of numbers (x, y, z) satisfying:

x2 +y2 + 22 = Xyz.

Any (x,y,z) € R3 arises as ( —+, 2 cosh Z”)
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Markoff triples

Markoff triples

A Markoff triple is a triple of numbers (x, y, z) satisfying:
x2 +y2 + 22 = Xyz.

—+, 2 cosh b ),

Any (x,y,z) € R3 arises as (2cos

or as A-lengths of an ideal triangulation (0., ,08,,0+,).
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Markoff triples

Representations

Given a 1-cusped torus S11, m1(S1,1) = (&, n | —).

Any non-zero Markoff triple (x, y, z) arises as the traces of the
following representation p : m1(S51,1) — SL(2, C):

R A O R i

z| xz y z| —yz X
-1

p(&n) = E 5 ]
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Markoff triples

Representations

Given a 1-cusped torus S11, m1(S1,1) = (&, n | —).

Any non-zero Markoff triple (x, y, z) arises as the traces of the
following representation p : m1(S51,1) — SL(2, C):

R A O R i

z| xz y z| —yz X
-1

p(&n) = E 5 ]

Thus, Markoff triples arise as the characters of (type-preserving)
representations.
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Markoff triples

Character varieties

» The traces of p(£), p(n) and p(&n) of any
p:m1(51,1) — SL(2, C) satisfies the Markoff triples relation.
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Markoff triples

Character varieties

» The traces of p(£), p(n) and p(&n) of any
p:m1(51,1) — SL(2, C) satisfies the Markoff triples relation.

» The set of Markoff triples is the character variety for Sy ;.
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Markoff triples

Character varieties

» The traces of p(£), p(n) and p(&n) of any
p:m1(51,1) — SL(2, C) satisfies the Markoff triples relation.

» The set of Markoff triples is the character variety for Sy ;.

» Any maximal dimensional component of the real character
subvariety is the Teichmiiller space 7(51,1):

T(51,1) = { hyperbolic structures on S 1, up to isotopy}
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Markoff triples

Flippin' out!

We can generate new Markoff triples using flips:

(X,y,Z) = (X7}/7X}/_Z)-

Yi Huang Flipping numbers and curves



Markoff triples

Flippin' out!

We can generate new Markoff triples using flips:

(X,y,Z) = (X7}/7X}/_Z)-

» There's a corresponding flipping of geodesics.
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Markoff triples

Flippin' out!

We can generate new Markoff triples using flips:

(X,y,Z) = (X7}/7X}/_Z)-

» There's a corresponding flipping of geodesics.
» A triple of such geodesics can be flipped to any other triple.
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Markoff triples

Flippin' out!

We can generate new Markoff triples using flips:

(X,y,Z) = (X7}/7X}/_Z)-

» There's a corresponding flipping of geodesics.
» A triple of such geodesics can be flipped to any other triple.

> Flips can be thought of as extended mapping classes —
(potentially non-orientable) homeomorphisms of Sy 1 up to
isotopy.
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Markoff triples

Flippin' out!

We can generate new Markoff triples using flips:

(X,y,Z) = (X7}/7X}/_Z)-

v

There's a corresponding flipping of geodesics.

v

A triple of such geodesics can be flipped to any other triple.

v

Flips can be thought of as extended mapping classes —
(potentially non-orientable) homeomorphisms of Sy 1 up to
isotopy.

v

Flips and coordinate permutations generate the entire
extended mapping class group of 5 1.
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Classical results

Systolic geometry

Flips give us a simple geodesic length generating algorithm for any
1-cusped hyperbolic torus.

» Algorithm for working out the shortest geodesic (systole).
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Classical results

Systolic geometry

Flips give us a simple geodesic length generating algorithm for any
1-cusped hyperbolic torus.

» Algorithm for working out the shortest geodesic (systole).

» The maximum of the systole function over Teichmiiller space
(and moduli space) is the (3,3, 3) cusped torus.
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Classical results

Systolic geometry

Flips give us a simple geodesic length generating algorithm for any
1-cusped hyperbolic torus.

» Algorithm for working out the shortest geodesic (systole).

» The maximum of the systole function over Teichmiiller space
(and moduli space) is the (3,3, 3) cusped torus.

» The shortest geodesic for any 1-cusped hyperbolic torus is at
most 2arccosh(3).
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Classical results

Geodesic growth rates

Let (x,y,z) and (x' = yz — x, y, z) be flips of each other where
x < x'. Generically, yz > x, thus:

log(x") ~ log(y) + log(z).

= Fibonacci growth.
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Classical results

Geodesic growth rates

Let (x,y,z) and (x' = yz — x, y, z) be flips of each other where
x < x'. Generically, yz > x, thus:

log(x") ~ log(y) + log(z).
= Fibonacci growth.

The length of a simple closed geodesics is roughly 2 log(-) of its
corresponding trace. Consider:

Ns(L) := { simple closed geodesics on S shorter than L},

Fibonacci growth = Ns(L) is asymptotically o - L2.
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Classical results

McShane identity

Rewriting the Markoff triples equation and the flipping relation:

1:i+y NG X! y

z X z
—+—andl=—+ —= — ="~ + —.

yz = xz Xy yz yz yz Xz Xy

= Break up the (rewritten) Markoff triples equation into finer and

finer summands.
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Classical results

McShane identity

Rewriting the Markoff triples equation and the flipping relation:

X x!' x'
_x_ Y y

z X z
—+—andl=—+ —= — ="~ + —.
yz = xz Xy yz yz yz Xz Xy
= Break up the (rewritten) Markoff triples equation into finer and

finer summands.

1

In the limit, we obtain McShane identities:

2
D S
~v€Simm(S) 1+ewp B’y

where Sim;(S) is the set of simple closed geodesics on S.
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Classical results

McShane identity

Rewriting the Markoff triples equation and the flipping relation:

yz = xz Xy yz yz yz Xz Xy
= Break up the (rewritten) Markoff triples equation into finer and

finer summands.

/ /

1

In the limit, we obtain McShane identities:
2
R
~v€Simm(S) 1+ewp B’y

where Sim;(S) is the set of simple closed geodesics on S.

Each term is the chance a geodesic shot out from the cusp on S
won't hit v before self-intersecting.
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Markoff quads

Markoff quads

A Markoff quad is a 4-tuple of numbers (a, b, c, d) satisfying:
(a+ b+ c+d)? = abcd.
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Markoff quads

Markoff quads

A Markoff quad is a 4-tuple of numbers (a, b, c, d) satisfying:
(a+ b+ c+d)? = abcd.

Any (a, b, c,d) € RY arises as 2sinh(3-) of geodesic lengths:
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Markoff quads

Markoff quads

A Markoff quad is a 4-tuple of numbers (a, b, c, d) satisfying:
(a+ b+ c+d)? = abcd.

Any (a, b, c,d) € RY arises as 2sinh(3-) of geodesic lengths:

{Markoffquads} = character variety for 3-cusped projective planes.
Real character subvariety — Teichmiiller space.
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Markoff quads

» We can generate new Markoff quads using flips:

(a, b,c,d) — (a,b,c,abc —2a—2b—2c — d).
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Markoff quads

» We can generate new Markoff quads using flips:
(a, b,c,d) — (a,b,c,abc —2a—2b—2c — d).

» There's a corresponding flipping of geodesics.
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Markoff quads

» We can generate new Markoff quads using flips:
(a, b,c,d) — (a,b,c,abc —2a—2b—2c — d).

» There's a corresponding flipping of geodesics.

» A quad of such geodesics can be flipped to any other quad =
geodesic length generating algorithm.
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Markoff quads

v

We can generate new Markoff quads using flips:

(a, b,c,d) — (a,b,c,abc —2a—2b—2c — d).

v

There's a corresponding flipping of geodesics.

v

A quad of such geodesics can be flipped to any other quad =
geodesic length generating algorithm.

v

Flips can be thought of as extended mapping classes, and
flips+permutations generate the (extended) mapping class

group.
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Our results

Systolic geometry

Theorem
The maximum of the systole function over the moduli space of

3-cusped projective plane is 2arcsinh(2), and uniquely attained by
the (4,4,4,4) surface.
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Our results

Geodesic growth rates

Let (a,b,c,d) and (4, b, ¢, d) be flips of each other where a < 4/,
generically:

log(a’) ~ log(b) + log(c) + log(d).

= Fibonacci growth.
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Our results

Geodesic growth rates

Let (a,b,c,d) and (4, b, ¢, d) be flips of each other where a < 4/,
generically:

log(a’) ~ log(b) + log(c) + log(d).
= Fibonacci growth.
Consider

Ns(L) := { 1-sided simple closed geodesics on S shorter than L},

Fibonacci growth = Ns(L) is between O(L%430) and O(L%#77).
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Our results

McShane identity

We similarly obtain the following sum refinement:

at+b+c+d a+b+c+d a+b+c+d a+b+c+d
+ + +

1= bed acd abd abc
aMl_a+b+c+d+d+b+c+d
- bcd bcd '
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Our results

McShane identity

We similarly obtain the following sum refinement:

at+b+c+d a+b+c+d a+b+c+d a+b+c+d
+ + +

1= bed acd abd abc
aMl_a+b+c+d+d+b+c+d
- bcd bcd '
Theorem

Given any 3-cusped projective plane S,

2
S D
y€Sim}(S) 1+exp 67

where Sim}(S) is the set of 2-sided simple closed geodesics on S.
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Our results

Future directions

Number theory: Integer Markoff triples flip to integer Markoff
triples, and integer Markoff triples are central in
number theory:

> rational approximation;
» Markoff's theorem for quadratic forms;
> the unicity conjecture.
Markoff quad equivalents?
Geometry: Are BQ-conditions trace-based characterisations of
quasi-Fuchsian representations?

Are there geometric interpretations for more general
Markoff-Hurwitz numbers?
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Our results

In case anyone asks. ..

P F3 = (OZ,B,’)/> - SL:E(2’(C)

N 1 [ ab b(a+ c) ]
at+b+c+d|a(a+d) ala+c+d)]’
By 1 [ ab —b(b-i—d)}
at+b+c+d|—-alb+c) b(b+cH+d)]’
1 [ab+c(a+b+c+d) bla+c)
7'_>a+b+c+d_ —a(b+¢) —ab }
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