What do the following quadruples of numbers have in common?

$$(1,5,24,30),$$
 $(1,6,14,21),$ $(1,8,9,18),$ $(1,9,10,10),$ $(2,3,10,15),$ $(2,5,5,8),$ $(3,3,6,6),$ $(4,4,4,4)$

Flipping numbers and curves

Yi Huang

University of Melbourne

December 11th, 2014

Markoff triples

A *Markoff triple* is a triple of numbers (x, y, z) satisfying:

$$x^2 + y^2 + z^2 = xyz.$$

Markoff triples

A *Markoff triple* is a triple of numbers (x, y, z) satisfying:

$$x^2 + y^2 + z^2 = xyz.$$

Any $(x, y, z) \in \mathbb{R}^3_+$ arises as $(2 \cosh \frac{\ell_{\alpha_1}}{2}, 2 \cosh \frac{\ell_{\beta_1}}{2}, 2 \cosh \frac{\ell_{\gamma_1}}{2})$,

Markoff triples

A *Markoff triple* is a triple of numbers (x, y, z) satisfying:

$$x^2 + y^2 + z^2 = xyz.$$

Any $(x,y,z) \in \mathbb{R}^3_+$ arises as $(2\cosh\frac{\ell_{\alpha_1}}{2},2\cosh\frac{\ell_{\beta_1}}{2},2\cosh\frac{\ell_{\gamma_1}}{2})$,

or as λ -lengths of an ideal triangulation $(\sigma_{\alpha_1}, \sigma_{\beta_2}, \sigma_{\gamma_1})$.

Representations

Given a 1-cusped torus $S_{1,1}$, $\pi_1(S_{1,1}) \cong \langle \xi, \eta \mid - \rangle$.

Any non-zero Markoff triple (x, y, z) arises as the traces of the following representation $\rho : \pi_1(S_{1,1}) \to \mathrm{SL}(2,\mathbb{C})$:

$$\rho(\xi) = \frac{1}{z} \begin{bmatrix} xz - y & xz^{-1} \\ xz & y \end{bmatrix}, \ \rho(\eta) = \frac{1}{z} \begin{bmatrix} yz - x & -yz^{-1} \\ -yz & x \end{bmatrix},$$
$$\rho(\xi\eta) = \begin{bmatrix} z & -z^{-1} \\ z & 0 \end{bmatrix}.$$

Representations

Given a 1-cusped torus $S_{1,1}$, $\pi_1(S_{1,1}) \cong \langle \xi, \eta \mid - \rangle$.

Any non-zero Markoff triple (x, y, z) arises as the traces of the following representation $\rho: \pi_1(S_{1,1}) \to \mathrm{SL}(2,\mathbb{C})$:

$$\rho(\xi) = \frac{1}{z} \begin{bmatrix} xz - y & xz^{-1} \\ xz & y \end{bmatrix}, \ \rho(\eta) = \frac{1}{z} \begin{bmatrix} yz - x & -yz^{-1} \\ -yz & x \end{bmatrix},$$
$$\rho(\xi\eta) = \begin{bmatrix} z & -z^{-1} \\ z & 0 \end{bmatrix}.$$

Thus, Markoff triples arise as the characters of (type-preserving) representations.

Character varieties

▶ The traces of $\rho(\xi)$, $\rho(\eta)$ and $\rho(\xi\eta)$ of any $\rho: \pi_1(S_{1,1}) \to \operatorname{SL}(2,\mathbb{C})$ satisfies the Markoff triples relation.

Character varieties

- ▶ The traces of $\rho(\xi)$, $\rho(\eta)$ and $\rho(\xi\eta)$ of any $\rho: \pi_1(S_{1,1}) \to \operatorname{SL}(2,\mathbb{C})$ satisfies the Markoff triples relation.
- ▶ The set of Markoff triples is the character variety for $S_{1,1}$.

Character varieties

- ▶ The traces of $\rho(\xi)$, $\rho(\eta)$ and $\rho(\xi\eta)$ of any $\rho: \pi_1(S_{1,1}) \to \operatorname{SL}(2,\mathbb{C})$ satisfies the Markoff triples relation.
- ▶ The set of Markoff triples is the character variety for $S_{1,1}$.
- Any maximal dimensional component of the real character subvariety is the Teichmüller space $\mathcal{T}(S_{1,1})$:

$$\mathcal{T}(S_{1,1}) = \{ \text{ hyperbolic structures on } S_{1,1}, \text{ up to isotopy} \}$$

$$(x, y, z) \mapsto (x, y, xy - z).$$

We can generate new Markoff triples using flips:

$$(x, y, z) \mapsto (x, y, xy - z).$$

► There's a corresponding flipping of geodesics.

$$(x, y, z) \mapsto (x, y, xy - z).$$

- ▶ There's a corresponding flipping of geodesics.
- ▶ A triple of such geodesics can be flipped to any other triple.

$$(x, y, z) \mapsto (x, y, xy - z).$$

- There's a corresponding flipping of geodesics.
- A triple of such geodesics can be flipped to any other triple.
- ▶ Flips can be thought of as extended mapping classes (potentially non-orientable) homeomorphisms of $S_{1,1}$ up to isotopy.

$$(x, y, z) \mapsto (x, y, xy - z).$$

- There's a corresponding flipping of geodesics.
- ▶ A triple of such geodesics can be flipped to any other triple.
- ▶ Flips can be thought of as extended mapping classes (potentially non-orientable) homeomorphisms of $S_{1,1}$ up to isotopy.
- ▶ Flips and coordinate permutations generate the entire extended mapping class group of $S_{1,1}$.

Flips give us a simple geodesic length generating algorithm for any 1-cusped hyperbolic torus.

Algorithm for working out the shortest geodesic (systole).

Flips give us a simple geodesic length generating algorithm for any 1-cusped hyperbolic torus.

- ▶ Algorithm for working out the shortest geodesic (systole).
- ► The maximum of the systole function over Teichmüller space (and moduli space) is the (3,3,3) cusped torus.

Flips give us a simple geodesic length generating algorithm for any 1-cusped hyperbolic torus.

- ▶ Algorithm for working out the shortest geodesic (systole).
- ► The maximum of the systole function over Teichmüller space (and moduli space) is the (3,3,3) cusped torus.
- ► The shortest geodesic for any 1-cusped hyperbolic torus is at most $2\operatorname{arccosh}(\frac{3}{2})$.

Geodesic growth rates

Let (x, y, z) and (x' = yz - x, y, z) be flips of each other where $x \le x'$. Generically, $yz \gg x$, thus:

$$\log(x') \approx \log(y) + \log(z).$$

⇒ Fibonacci growth.

Geodesic growth rates

Let (x, y, z) and (x' = yz - x, y, z) be flips of each other where $x \le x'$. Generically, $yz \gg x$, thus:

$$\log(x') \approx \log(y) + \log(z).$$

⇒ Fibonacci growth.

The length of a simple closed geodesics is roughly $2 \log(\cdot)$ of its corresponding trace. Consider:

 $N_S(L) := \{ \text{ simple closed geodesics on } S \text{ shorter than } L \},$

Fibonacci growth $\Rightarrow N_S(L)$ is asymptotically $\alpha \cdot L^2$.

Rewriting the Markoff triples equation and the flipping relation:

$$1 = \frac{x}{yz} + \frac{y}{xz} + \frac{z}{xy} \text{ and } 1 = \frac{x}{yz} + \frac{x'}{yz} \Rightarrow \frac{x'}{yz} = \frac{y}{xz} + \frac{z}{xy}.$$

 \Rightarrow Break up the (rewritten) Markoff triples equation into finer and finer summands.

Rewriting the Markoff triples equation and the flipping relation:

$$1 = \frac{x}{yz} + \frac{y}{xz} + \frac{z}{xy} \text{ and } 1 = \frac{x}{yz} + \frac{x'}{yz} \Rightarrow \frac{x'}{yz} = \frac{y}{xz} + \frac{z}{xy}.$$

 \Rightarrow Break up the (rewritten) Markoff triples equation into finer and finer summands.

In the limit, we obtain McShane identities:

$$1 = \sum_{\gamma \in \operatorname{Sim} \pi_1(\mathcal{S})} \frac{2}{1 + \exp \ell_{\gamma}},$$

where $Sim \pi_1(S)$ is the set of simple closed geodesics on S.

Rewriting the Markoff triples equation and the flipping relation:

$$1 = \frac{x}{yz} + \frac{y}{xz} + \frac{z}{xy} \text{ and } 1 = \frac{x}{yz} + \frac{x'}{yz} \Rightarrow \frac{x'}{yz} = \frac{y}{xz} + \frac{z}{xy}.$$

 \Rightarrow Break up the (rewritten) Markoff triples equation into finer and finer summands.

In the limit, we obtain McShane identities:

$$1 = \sum_{\gamma \in \operatorname{Sim} \pi_1(S)} rac{2}{1 + \exp \ell_\gamma},$$

where $Sim \pi_1(S)$ is the set of simple closed geodesics on S.

Each term is the chance a geodesic shot out from the cusp on S won't hit γ before self-intersecting.

Markoff quads

A Markoff quad is a 4-tuple of numbers (a, b, c, d) satisfying:

$$(a+b+c+d)^2 = abcd.$$

Markoff quads

A Markoff quad is a 4-tuple of numbers (a, b, c, d) satisfying:

$$(a+b+c+d)^2 = abcd.$$

Any $(a, b, c, d) \in \mathbb{R}^4_+$ arises as $2 \sinh(\frac{1}{2} \cdot)$ of geodesic lengths:

Markoff quads

A Markoff quad is a 4-tuple of numbers (a, b, c, d) satisfying:

$$(a+b+c+d)^2 = abcd.$$

Any $(a, b, c, d) \in \mathbb{R}^4_+$ arises as $2 \sinh(\frac{1}{2} \cdot)$ of geodesic lengths:

 $\{\textit{Markoffquads}\} = \text{character variety for 3-cusped projective planes}.$ Real character subvariety \rightarrow Teichmüller space.

▶ We can generate new Markoff quads using flips:

$$(a, b, c, d) \mapsto (a, b, c, abc - 2a - 2b - 2c - d).$$

▶ We can generate new Markoff quads using *flips*:

$$(a, b, c, d) \mapsto (a, b, c, abc - 2a - 2b - 2c - d).$$

► There's a corresponding flipping of geodesics.

▶ We can generate new Markoff quads using *flips*:

$$(a, b, c, d) \mapsto (a, b, c, abc - 2a - 2b - 2c - d).$$

- ▶ There's a corresponding flipping of geodesics.
- ▶ A quad of such geodesics can be flipped to any other quad ⇒ geodesic length generating algorithm.

▶ We can generate new Markoff quads using *flips*:

$$(a, b, c, d) \mapsto (a, b, c, abc - 2a - 2b - 2c - d).$$

- ▶ There's a corresponding flipping of geodesics.
- ▶ A quad of such geodesics can be flipped to any other quad ⇒ geodesic length generating algorithm.
- ► Flips can be thought of as extended mapping classes, and flips+permutations generate the (extended) mapping class group.

Theorem

The maximum of the systole function over the moduli space of 3-cusped projective plane is $2\operatorname{arcsinh}(2)$, and uniquely attained by the (4,4,4,4) surface.

Geodesic growth rates

Let (a, b, c, d) and (a', b, c, d) be flips of each other where $a \le a'$, generically:

$$\log(a') \approx \log(b) + \log(c) + \log(d).$$

 \Rightarrow Fibonacci growth.

Geodesic growth rates

Let (a, b, c, d) and (a', b, c, d) be flips of each other where $a \le a'$, generically:

$$\log(a') \approx \log(b) + \log(c) + \log(d).$$

 \Rightarrow Fibonacci growth.

Consider

 $N_S(L) := \{ \text{ 1-sided simple closed geodesics on } S \text{ shorter than } L \},$

Fibonacci growth $\Rightarrow N_S(L)$ is between $O(L^{2.430})$ and $O(L^{2.477})$.

We similarly obtain the following sum refinement:

$$1 = \frac{a+b+c+d}{bcd} + \frac{a+b+c+d}{acd} + \frac{a+b+c+d}{abd} + \frac{a+b+c+d}{abc}$$
 and
$$1 = \frac{a+b+c+d}{bcd} + \frac{a'+b+c+d}{bcd}.$$

We similarly obtain the following sum refinement:

$$1 = \frac{a+b+c+d}{bcd} + \frac{a+b+c+d}{acd} + \frac{a+b+c+d}{abd} + \frac{a+b+c+d}{abc}$$
 and
$$1 = \frac{a+b+c+d}{bcd} + \frac{a'+b+c+d}{bcd}.$$

Theorem

Given any 3-cusped projective plane S,

$$1 = \sum_{\gamma \in \operatorname{Sim} \pi^1_1(\mathcal{S})} rac{2}{1 + \exp \ell_\gamma},$$

where $\operatorname{Sim} \pi_1^1(S)$ is the set of 2-sided simple closed geodesics on S.

Future directions

Number theory: Integer Markoff triples flip to integer Markoff triples, and integer Markoff triples are central in number theory:

- rational approximation;
- Markoff's theorem for quadratic forms;
- the unicity conjecture.

Markoff quad equivalents?

Geometry: Are BQ-conditions trace-based characterisations of quasi-Fuchsian representations?

Are there geometric interpretations for more general Markoff-Hurwitz numbers?

In case anyone asks...

$$\rho: F_{3} = \langle \alpha, \beta, \gamma \rangle \to \operatorname{SL}^{\pm}(2, \mathbb{C})$$

$$\alpha \mapsto \frac{1}{a+b+c+d} \begin{bmatrix} ab & b(a+c) \\ a(a+d) & a(a+c+d) \end{bmatrix},$$

$$\beta \mapsto \frac{1}{a+b+c+d} \begin{bmatrix} ab & -b(b+d) \\ -a(b+c) & b(b+c+d) \end{bmatrix},$$

$$\gamma \mapsto \frac{1}{a+b+c+d} \begin{bmatrix} ab+c(a+b+c+d) & b(a+c) \\ -a(b+c) & -ab \end{bmatrix}.$$