On De-Klein-ing Lie's

Yi Huang

University of Melbourne
January 15th, 2013

A long long time ago...

A long long time ago...

- e is transcental!

A long long time ago...

- e is transcental!
- π is transcendental!

A long long time ago...

- e is transcental!
- π is transcendental!
- People still used notation like: ∞^{3}

A long long time ago...

- e is transcental!
- π is transcendental!
- People still used notation like: ∞^{3}
- There are countable and countable ∞ s!

A long long time ago...

- e is transcental!
- π is transcendental!
- People still used notation like: ∞^{3}
- There are countable and countable ∞ s!
- Projective geometry:"lines are infinitely large circles."

A long long time ago...

- e is transcental!
- π is transcendental!
- People still used notation like: ∞^{3}
- There are countable and countable os!
- Projective geometry:"lines are infinitely large circles."

How can we formalise this idea that lines are just BIG circles?

Projectivisation: adding in stuff at infinity.

Projectivisation: adding in stuff at infinity.

1. Add in a new coordinate:

$$
(x, y) \mapsto[1: x: y]
$$

Projectivisation: adding in stuff at infinity.

1. Add in a new coordinate:

$$
(x, y) \mapsto[1: x: y]
$$

2. Treat points which are (non-zero) multiples of each other as being the same point:

$$
[1: x: y]=[a: a x: a y] .
$$

Projectivisation: adding in stuff at infinity.

1. Add in a new coordinate:

$$
(x, y) \mapsto[1: x: y]
$$

2. Treat points which are (non-zero) multiples of each other as being the same point:

$$
[1: x: y]=[a: a x: a y] .
$$

3. The points at ∞ are the ones where the first coordinate is 0 :

$$
[0: x: y]
$$

To be precise, the projective n-space \mathbb{P}^{n} is given by:

$$
\mathbb{P}^{n}:=\left\{\left[x_{0}: x_{1}: \ldots: x_{n}\right]: \text { the } x_{i} \text { aren't all } 0\right\}
$$

To be precise, the projective n-space \mathbb{P}^{n} is given by:

$$
\mathbb{P}^{n}:=\left\{\left[x_{0}: x_{1}: \ldots: x_{n}\right]: \text { the } x_{i} \text { aren't all } 0\right\}
$$

and we have the n-space \mathbb{R}^{n} sitting inside of it as:

$$
\mathbb{R}^{n}=\left\{\left[1: x_{1}: x_{2}: \ldots: x_{n}\right] \in \mathbb{P}^{n}\right\} \subset \mathbb{P}^{n} .
$$

To be precise, the projective n-space \mathbb{P}^{n} is given by:

$$
\mathbb{P}^{n}:=\left\{\left[x_{0}: x_{1}: \ldots: x_{n}\right]: \text { the } x_{i} \text { aren't all } 0\right\}
$$

and we have the n-space \mathbb{R}^{n} sitting inside of it as:

$$
\mathbb{R}^{n}=\left\{\left[1: x_{1}: x_{2}: \ldots: x_{n}\right] \in \mathbb{P}^{n}\right\} \subset \mathbb{P}^{n}
$$

Example 1: $\mathbb{P}^{1}=\mathbb{R} \cup\{[0: x]=[0: 1]\}=\mathbb{R}^{1} \cup \mathbb{R}^{0}=$ a circle.

To be precise, the projective n-space \mathbb{P}^{n} is given by:

$$
\mathbb{P}^{n}:=\left\{\left[x_{0}: x_{1}: \ldots: x_{n}\right]: \text { the } x_{i} \text { aren't all } 0\right\}
$$

and we have the n-space \mathbb{R}^{n} sitting inside of it as:

$$
\mathbb{R}^{n}=\left\{\left[1: x_{1}: x_{2}: \ldots: x_{n}\right] \in \mathbb{P}^{n}\right\} \subset \mathbb{P}^{n}
$$

Example 1: $\mathbb{P}^{1}=\mathbb{R} \cup\{[0: x]=[0: 1]\}=\mathbb{R}^{1} \cup \mathbb{R}^{0}=$ a circle.
Example 2: $\mathbb{P}^{2}=\mathbb{R}^{2} \cup\{[0: x, y]\}=\mathbb{R}^{2} \cup \mathbb{P}^{1}=\mathbb{R}^{2} \cup \mathbb{R}^{1} \cup \mathbb{R}^{0}$.

Treat $\left[x_{0}: x_{1}: \ldots: x_{n}\right]$ as a vector

 \Rightarrow matrix multiplication!Is it well-defined?

Treat $\left[x_{0}: x_{1}: \ldots: x_{n}\right]$ as a vector

\Rightarrow matrix multiplication!
Is it well-defined?

Yes: scaling by a commutes with multiplication by a matrix M.

$$
M\left[\begin{array}{c}
a x_{0} \\
a x_{1} \\
\cdot \\
\cdot \\
\cdot \\
a x_{n}
\end{array}\right]=M a \cdot\left[\begin{array}{c}
x_{0} \\
x_{1} \\
\cdot \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right]=a \cdot M\left[\begin{array}{c}
x_{0} \\
x_{1} \\
\cdot \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right]
$$

We've wound up with:

1. A space \mathbb{P}^{n},

We've wound up with:

1. A space \mathbb{P}^{n},
2. matrices multiplication for this space, (i.e.: $\mathrm{A} \mathrm{GL}_{n+1}\left(\mathbb{R}^{n}\right)$-action) and

We've wound up with:

1. A space \mathbb{P}^{n},
2. matrices multiplication for this space, (i.e.: $A \operatorname{GL}_{n+1}\left(\mathbb{R}^{n}\right)$-action) and
3. each point $\left[x_{0}: x_{1}: \ldots: x_{n}\right] \in \mathbb{P}^{n}$ is secretly: the line in \mathbb{R}^{n+1} spanned by $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$.

We've wound up with:

1. A space \mathbb{P}^{n},
2. matrices multiplication for this space, (i.e.: $A \mathrm{GL}_{n+1}\left(\mathbb{R}^{n}\right)$-action) and
3. each point $\left[x_{0}: x_{1}: \ldots: x_{n}\right] \in \mathbb{P}^{n}$ is secretly:

$$
\text { the line in } \mathbb{R}^{n+1} \text { spanned by }\left(x_{0}, x_{1}, \ldots, x_{n}\right) \text {. }
$$

The above $1-2-3$ structure is Klein's Erlangen program.
The "points" in this geometry can be thought of as lines in \mathbb{R}^{n+1} going through the origin.

What if:

- the "points" in our geometry are lines in \mathbb{R}^{3} ?

What if:

- the "points" in our geometry are lines in \mathbb{R}^{3} ? Ans: Plücker's line geometry.

What if:

- the "points" in our geometry are lines in \mathbb{R}^{3} ? Ans: Plücker's line geometry.
- the "points" in our geometry are spheres in \mathbb{R}^{3}

What if:

- the "points" in our geometry are lines in \mathbb{R}^{3} ? Ans: Plücker's line geometry.
- the "points" in our geometry are spheres in \mathbb{R}^{3} Ans: Lie's sphere geometry.

What if:

- the "points" in our geometry are lines in \mathbb{R}^{3} ? Ans: Plücker's line geometry.
- the "points" in our geometry are spheres in \mathbb{R}^{3} Ans: Lie's sphere geometry.

Spoiler: they're the same geometry!

Plücker's line geometry

A line in \mathbb{R}^{3} is given by two points on the line:

$$
\begin{aligned}
u= & \left(u_{1}, u_{2}, u_{3}\right), v=\left(v_{1}, v_{2}, v_{3}\right) \\
& \Rightarrow 3+3=6 \text { dimensions }
\end{aligned}
$$

Each one of these points is free to move along the line,
$\Rightarrow 6-1-1=4$ dimensions worth of lines.

Instead of giving a line in \mathbb{R}^{3} in terms of u and v, just knowing the following two vectors suffice:

$$
d:=v-u, m:=u \times v .
$$

Changing the position of u or v, rescales d and m by the same constant a.

Instead of giving a line in \mathbb{R}^{3} in terms of u and v, just knowing the following two vectors suffice:

$$
d:=v-u, m:=u \times v .
$$

Changing the position of u or v, rescales d and m by the same constant a.

Let's see why...

So, we should really think of the pair d and m as one point in \mathbb{P}^{5} :

$$
\left[d_{1}: d_{2}: d_{3}: m_{1}: m_{2}: m_{3}\right]
$$

So, we should really think of the pair d and m as one point in \mathbb{P}^{5} :

$$
\left[d_{1}: d_{2}: d_{3}: m_{1}: m_{2}: m_{3}\right]
$$

The vectors d and m must be orthogonal, so:

$$
d \cdot m=d_{1} m_{1}+d_{2} m_{2}+d_{3} m_{3}=0
$$

So, we should really think of the pair d and m as one point in \mathbb{P}^{5} :

$$
\left[d_{1}: d_{2}: d_{3}: m_{1}: m_{2}: m_{3}\right]
$$

The vectors d and m must be orthogonal, so:

$$
d \cdot m=d_{1} m_{1}+d_{2} m_{2}+d_{3} m_{3}=0
$$

The space of lines in \mathbb{R}^{3} is:

$$
\mathcal{L}=\left\{[d: m] \in \mathbb{P}^{5}: d_{1} m_{1}+d_{2} m_{2}+d_{3} m_{3}=0\right\}
$$

Intersecting lines

Fun fact $1 A$:
Given this way of specifying lines, two lines in \mathbb{R}^{3} given by

$$
\left[d_{1}, d_{2}, d_{3}, m_{1}, m_{2}, m_{3}\right] \text { and }\left[d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}, m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right]
$$

intersect if and only if

$$
d_{1} m_{1}^{\prime}+d_{1}^{\prime} m_{1}+d_{2} m_{2}^{\prime}+d_{2}^{\prime} m_{2}+d_{3} m_{3}^{\prime}+d_{3}^{\prime} m_{3}=0
$$

Erlangen

We've got a space \mathcal{L} (part 1 of Erlangen).
Each point in \mathcal{L} is a line in \mathbb{R}^{3} (part 3 of Erlangen).
Which matrices act on \mathcal{L} (part 2 of Erlangen)?

Erlangen

We've got a space \mathcal{L} (part 1 of Erlangen).
Each point in \mathcal{L} is a line in \mathbb{R}^{3} (part 3 of Erlangen).
Which matrices act on \mathcal{L} (part 2 of Erlangen)?
Easy/cheap answer: the ones that send lines to lines in \mathbb{R}^{3}
\Rightarrow the 6×6 matrices that preserve

$$
d_{1} m_{1}+d_{2} m_{2}+d_{3} m_{3}=0 .
$$

Fun fact $2 A$:

Any 6×6 matrix that preserves

$$
d_{1} m_{1}+d_{2} m_{2}+d_{3} m_{3}=0
$$

will also preserve

$$
d_{1} m_{1}^{\prime}+d_{1}^{\prime} m_{1}+d_{2} m_{2}^{\prime}+d_{2}^{\prime} m_{2}+d_{3} m_{3}^{\prime}+d_{3}^{\prime} m_{3}=0
$$

Fun fact $2 A$:

Any 6×6 matrix that preserves

$$
d_{1} m_{1}+d_{2} m_{2}+d_{3} m_{3}=0
$$

will also preserve

$$
d_{1} m_{1}^{\prime}+d_{1}^{\prime} m_{1}+d_{2} m_{2}^{\prime}+d_{2}^{\prime} m_{2}+d_{3} m_{3}^{\prime}+d_{3}^{\prime} m_{3}=0
$$

So, these matrices (i.e.: symmetries of the line geometry) preserve intersections between lines!

Onto Lie's. . . stuff

To begin with, here's a
Klein bottle:

Onto Lie's. . . stuff

To begin with, here's a (pseudo) Klein bottle:

How do we specify a sphere in \mathbb{R}^{3} ?

How do we specify a sphere in \mathbb{R}^{3} ?

$$
\begin{array}{r}
(X-B)^{2}+(X-C)^{2}+(X-D)^{2}-R^{2}=0 \\
X^{2}+Y^{2}+Z^{2}-2 B Y-2 C X-2 D X+B^{2}+C^{2}+D^{2}-R^{2}=0
\end{array}
$$

$B, C, D, R \Rightarrow 4$ dimensions.

How do we specify a sphere in \mathbb{R}^{3} ?

$$
\begin{array}{r}
(X-B)^{2}+(X-C)^{2}+(X-D)^{2}-R^{2}=0 \\
X^{2}+Y^{2}+Z^{2}-2 B Y-2 C X-2 D X+B^{2}+C^{2}+D^{2}-R^{2}=0
\end{array}
$$

$B, C, D, R \Rightarrow 4$ dimensions.
Set $E=B^{2}+C^{2}+D^{2}-R^{2}$ to get:

$$
X^{2}+Y^{2}+Z^{2}-2 B Y-2 C X-2 D X+E=0
$$

How do we specify a sphere in \mathbb{R}^{3} ?

$$
\begin{array}{r}
(X-B)^{2}+(X-C)^{2}+(X-D)^{2}-R^{2}=0 \\
X^{2}+Y^{2}+Z^{2}-2 B Y-2 C X-2 D X+B^{2}+C^{2}+D^{2}-R^{2}=0
\end{array}
$$

$B, C, D, R \Rightarrow 4$ dimensions.
Set $E=B^{2}+C^{2}+D^{2}-R^{2}$ to get:

$$
X^{2}+Y^{2}+Z^{2}-2 B Y-2 C X-2 D X+E=0
$$

So we see that the spheres in \mathbb{R}^{3} are given by:

$$
\left\{(B, C, D, E, R) \in \mathbb{R}^{5}: E=B^{2}+C^{2}+D^{2}-R^{2}\right\}
$$

Let's Projectivise!

We can projectivise our current set of spheres in \mathbb{R}^{3} by projectivising:
$(B, C, D, E, R) \mapsto[a: a B: a C: a D: a E: a R]=[a: b: c: d: e: r]$.
Therefore, our set of spheres now becomes:

$$
\mathcal{S}:=\left\{[a: b: c: d: e: r] \in \mathbb{P}^{5}: a e=b^{2}+c^{2}+d^{2}-r^{2}\right\}
$$

Let's Projectivise!

We can projectivise our current set of spheres in \mathbb{R}^{3} by projectivising:
$(B, C, D, E, R) \mapsto[a: a B: a C: a D: a E: a R]=[a: b: c: d: e: r]$.
Therefore, our set of spheres now becomes:

$$
\mathcal{S}:=\left\{[a: b: c: d: e: r] \in \mathbb{P}^{5}: a e=b^{2}+c^{2}+d^{2}-r^{2}\right\}
$$

Projectivising adds stuff at infinity, so what have we just added?

Tangent spheres

Fun fact $1 B$:

Given this way of specifying spheres, two spheres in \mathbb{R}^{3} given by

$$
[a: b: c: d: e: r] \text { and }\left[a^{\prime}: b^{\prime}: c^{\prime}: d^{\prime}: e^{\prime}: r^{\prime}\right]
$$

are (internally) tangent to eachother if and only if

$$
a e^{\prime}+a^{\prime} e-2 b^{\prime} b-2 c^{\prime} c-2 d^{\prime} d+2 r^{\prime} r=0
$$

Erlangen

We've got a space \mathcal{S} (part 1 of Erlangen).
Each point in \mathcal{S} is a sphere in \mathbb{R}^{3} (part 3 of Erlangen).
Which matrices act on \mathcal{S} (part 2 of Erlangen)?

Erlangen

We've got a space \mathcal{S} (part 1 of Erlangen).
Each point in \mathcal{S} is a sphere in \mathbb{R}^{3} (part 3 of Erlangen).
Which matrices act on \mathcal{S} (part 2 of Erlangen)?
Easy/cheap answer: the ones that send spheres to spheres in \mathbb{R}^{3} \Rightarrow the 6×6 matrices that preserve

$$
a e-b^{2}-c^{2}-d^{2}+r^{2}=0
$$

Fun fact $2 B$:

Any 6×6 matrix that preserves

$$
a e-b^{2}-c^{2}-d^{2}+r^{2}=0
$$

will also preserve

$$
a e^{\prime}+a^{\prime} e-2 b^{\prime} b-2 c^{\prime} c-2 d^{\prime} d+2 r^{\prime} r=0 .
$$

Fun fact $2 B$:

Any 6×6 matrix that preserves

$$
a e-b^{2}-c^{2}-d^{2}+r^{2}=0
$$

will also preserve

$$
a e^{\prime}+a^{\prime} e-2 b^{\prime} b-2 c^{\prime} c-2 d^{\prime} d+2 r^{\prime} r=0 .
$$

So, these matrices (i.e.: symmetries of the sphere geometry) preserve (internal) tangency between spheres!

Let's compare these two geometries:

Let's compare these two geometries:

- Their underlying points are solution sets to polynomials on \mathbb{P}^{5} :

$$
\begin{aligned}
\mathcal{L} & =\left\{d_{1} m_{1}+d_{2} m_{2}+d_{3} m_{3}=0 \text { in } \mathbb{P}^{5}\right\} \\
\mathcal{S} & =\left\{a e-b^{2}-c^{2}-d^{2}+r^{2}=0 \text { in } \mathbb{P}^{5}\right\}
\end{aligned}
$$

Let's compare these two geometries:

- Their underlying points are solution sets to polynomials on \mathbb{P}^{5} :

$$
\begin{aligned}
& \mathcal{L}=\left\{d_{1} m_{1}+d_{2} m_{2}+d_{3} m_{3}=0 \text { in } \mathbb{P}^{5}\right\} \\
& \mathcal{S}=\left\{a e-b^{2}-c^{2}-d^{2}+r^{2}=0 \text { in } \mathbb{P}^{5}\right\}
\end{aligned}
$$

- Both are 4-dimensional.

Let's compare these two geometries:

- Their underlying points are solution sets to polynomials on \mathbb{P}^{5} :

$$
\begin{aligned}
\mathcal{L} & =\left\{d_{1} m_{1}+d_{2} m_{2}+d_{3} m_{3}=0 \text { in } \mathbb{P}^{5}\right\} \\
\mathcal{S} & =\left\{a e-b^{2}-c^{2}-d^{2}+r^{2}=0 \text { in } \mathbb{P}^{5}\right\}
\end{aligned}
$$

- Both are 4-dimensional.
- The matrices acting on these two geometries respectively preserve intersecting lines and tangent spheres.

Let's compare these two geometries:

- Their underlying points are solution sets to polynomials on \mathbb{P}^{5} :

$$
\begin{aligned}
& \mathcal{L}=\left\{d_{1} m_{1}+d_{2} m_{2}+d_{3} m_{3}=0 \text { in } \mathbb{P}^{5}\right\} \\
& \mathcal{S}=\left\{a e-b^{2}-c^{2}-d^{2}+r^{2}=0 \text { in } \mathbb{P}^{5}\right\}
\end{aligned}
$$

- Both are 4-dimensional.
- The matrices acting on these two geometries respectively preserve intersecting lines and tangent spheres.
- Their defining equations are almost the same thing:

$$
\begin{gathered}
d_{1} \mapsto b+i c, m_{1} \mapsto b-i c, d_{2} \mapsto d-r, m_{2} \mapsto d+r \\
d_{3} \mapsto a, d_{4} \mapsto-e
\end{gathered}
$$

Pictures Please?

Geometry: points, curves, surfaces, spaces...
We have points, what are lines?

Answer: ruled surfaces - surfaces in \mathbb{R}^{3} made out of straight lines.

A hyperboloid of 1-sheet can be made from a family of straight lines in two ways,

so that each line in family 1 intersects every other line in family 2.

What's the corresponding object in Lie's sphere geometry?

It needs to be:

What's the corresponding object in Lie's sphere geometry?
It needs to be:

- associated to two families of spheres, and

What's the corresponding object in Lie's sphere geometry?
It needs to be:

- associated to two families of spheres, and
- each sphere in family 1 needs to tangentally touch spheres in family 2.

A Dupin's cylide! (a special type of torus)

Google "metamathological" for the gory details.

