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The point of this note is to explain the story [Coh55, Coh71] between real quadratic
forms and simple closed geodesics on 1-cusped hyperbolic tori. Specifically, I
want to gain some understanding for Markoff’s theorem for quadratic forms:

Theorem 1 (Markoff). Given an arbitrary real quadratic form

f(x,y) = ax2 + bxy+ cy2 with discriminant ∆(f) = b2 − 4ac,

there are integer pairs (x,y) ∈ Z× Z such that

0 <
|f(x,y)|√

∆(f)
6 1

3
unless if f is a Markoff form.

There are countably many Markoff forms and they take the following form:

px2 + (3p− 2a)xy+ (b− 3a)y2,

where 0 < a < p
2 ,a ≡ ±r mod p,bp− a2 = 1 and (p,q, r) is a Markoff triple. That

is, a triple of positive integers satisfying:

p2 + q2 + r2 = 3pqr.

I use Series’s paper [Ser85] as a basis for these notes. In fact, she also uses this
technology to explain a classification of irrational numbers based on how they
may be approximated by truncations of their continued fraction representation.

1. Language

The 1-cusped torus S0 is the unique 1-cusped torus with order 6 isometry group.
It can be specified by the following (lift of the) monodromy representation (from
PSL2(R) = Isom+(H) into SL2(R)):

ρ0 : π1(S0) ∼= ⟨α,β⟩ → SL2(Z) 6 SL2(R)
α 7→

[
1 1
1 2

]
,β 7→

[ 1 −1
−1 2

]
.

Since S0 is a quotient manifold of H by ρ0(π1(S0)), we say that a geodesic on H
projects to a geodesic on S0.

2. Strategy

There are three key steps to proving this result:

1

http://www.ms.unimelb.edu.au/~huay


1. Show that (all but countably many of) the compactly-supported simple
geodesics on the order 6-symmetric 1-cusped torus S0 are precisely the
geodesics which don’t meet the length 4 horocycle on S0. That is to say: all
self-intersecting geodesics meet the length 4 horocycle.

2. Use matrices M corresponding to simple closed geodesics (via a particu-
lar monodromy representation of S0) to construct the Markoff forms QM

and use the characterisation established by the previous step to obtain the
following inequality:

QM(1, 0) < 1
3

√
∆(QM).

3. Reformulate these Markoff forms in terms of Markoff triples instead of
monodromy representation matrices.

We don’t go through the third step because Series doesn’t cover it in the paper
and I have neither learned nor derived it. I’m going to outline everything in dot
points — it helps me think.

3. Proof Outine

Let’s start with Markoff’s “classification” of irrational numbers. We assume for
now a few geometric facts that we later encounter. E.g.: simple closed geodesics
on S0 do not meet the length 4 horocycle on S0.

• Irrational numbers θ can be approximated by a sequence of rationals pn

qn
.

This is called a good approximation if there is a constant c such that:∣∣∣∣θ−
pn

qn

∣∣∣∣ < c

q2
n

.

• These fractions {pn

qn
} are called the convergents. They are the n-the step

truncations of the continued fraction for θ = [n0,n1,n2, . . .].

• Define ν(θ) to be the infimum of all of the possible c:

ν(θ) := inf
{
c :

∣∣∣∣θ−
p

q

∣∣∣∣ < c

q2 for infinitely many integers q

}
.

• Markoff [1879] showed that there’s a discrete set of values νi decreasing
to 1

3 so that if ν(θ) > 1
3 , then ν(θ) = νi for some i. These {νi} are called

the Markoff spectrum and the corresponding irrational numbers θ are called
Markoff irrationalities.

• ν(θ) 6 1√
5
, and equality is attained if and only if θ = [n0, . . . ,nk, 1, 1, 1, . . .].

Although Series doesn’t (to my knowledge) explain how one obtains this
result, it’s probably got something to do with the three geodesics of shortest
length [sic] on S0.

• Series tesselates the universal cover H of S0 with ideal triangles and para-
phrases geodesics in terms of sequences specifying which ideal triangles
they hit. She defines periodic and characteristic sequences.
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• For any θ ∈ R, consider the “vertical” geodesic σ(θ) in the hyperbolic plane
H joining the ideal points θ and ∞. This projects to a bi-infinite geodesic
on S0. We partition the set of irrational numbers θs into three classes:

1. σ(θ) projects to a simple bi-infinite geodesic with one end going up
into the cusp and the other end spiralling into a simple closed geodesic
(σ(θ) is eventually-characteristic and eventually-periodic);

2. σ(θ) projects to a simple bi-infinite geodesic with one end going up
into the cusp and the other end spiralling into a leaf of some geodesic
lamination that can be approximated by a sequence of simple closed
geodesics (σ(θ) is eventually-characteristic and never-periodic);

3. σ(θ) projects to a non-simple bi-infinite geodesic with at least one end
going up into the cusp (σ(θ) is never-characteristic).

• Note that we ignore rationalities (θ ∈ Q), for which σ(θ) project to bi-infinite
geodesics that (may self-intersect finitely many times and) have both ends
up the cusp.

• The collection of irrationalities (θ /∈ Q) falling within case 1 correspond to
Markoff irrationalities. To see this, use the following fact:

• An arbitrary matrix
[
a b
c d

]
∈ SL(2,R) takes the following lift of the length 4

horocycle on S0

h 3
2
:=

{
z ∈ C | ℑ(z) = 3

2

}
to a horocycle in H tangent to a

c
∈ R and with Euclidean radius 1

2× 3
2 c

2 = 1
3c2 .

• Case 1 bi-infinite geodesics σ(θ) start within the cuspidal region bounded
by the length 4 horocycle, but then spiral arbitrarily close one simple closed
geodesic. Thus, they eventually get out of this cuspidal region for good.

• The following three conditions are equivalent:

1. σ(θ) meets finitely many horocycles in ρ0(π1(S0)) · h 3
2
;

2. |θ− p
q
| < 1

3q2 for only finitely many p
q

;

3. ν(θ) > 1
3 .

And this, combined with the previous two dot points, shows that Case
1 (when σ(θ) spirals to simple closed geodesics) corresponds to Markoff
irrationalitie.

• For Case 2, the bi-infinite geodesics σ(θ) corresponds to a geodesic lamina-
tion and leaves the length 4 horocycle but then gets aribtrarily close (back)
to the length 4 horocycle. Case 2 irrationalities θ satisfy ν(θ) = 1

3 , since for
any c > 1

3 we could find some a collection of p
q

so that∣∣∣∣θ−
p

q

∣∣∣∣ < c

q2 for infinitely many integers q.
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Figure 1: An example of a simple compactly-supported geodesic which
meets the length 4 horocycle.

• For Case 3, we need to show that self-intersecting geodesics necessarily
enter into the cuspidal region bounded by the length 4 horocycle. Thus
concluding that ν(θ) < 1

3 for all Case 3 geodesics. This is easy to see this
using fundamental domains on H, but it would be nice to have a more
intrinsic way of proving this.

We turn now to Step 1 of the proof of Markoff’s theorem for quadratic forms:

• We begin with the following easy fact, which I proved differently using a
little trigonometry:

Lemma 2. No simple closed geodesic touches the length 4 horocycle on S0.

It’s fairly easy to show using trigonometry that this fact holds for any 1-
cusped hyperbolic torus.

• The above lemma means that (compactly-supported simple) geodesics which
may be arbitrarily closely approximated by simple closed geodesics, also
can’t touch the length 4 horocycle. These simple geodesics all arise as
leaves of geodesic laminations. In fact, the only type of leaf of a compactly-
supported geodesic lamination is a simple bi-infinite geodesic whose two
ends spiral into the same simple closed geodesic (figure 1) on S0 so that
they’re spiralling in the “opposite” direction1.

• Moreover, the longer simple closed geodesics on S0 get closer to the length
4 horocycle on S0. Hence, geodesics which may be arbitrarily closely ap-
proximated by a sequence of length-increasing simple closed geodesics, get
arbitrarily close to the length 4 horocycle.

• A much deeper result that I haven’t been able to prove using just trigonom-
etry2 is the “converse” to the above result:

Lemma 3. Self-intersecting geodesics necessarily meet the length 4 horocycle.

1I’m using Series’s language here, and I assert that her figure 9 is incorrect.
2 I have verified this fact geometrically for once self-intersecting closed geodesics and I

wonder if it’s possible to prove this by proving it for the collection of all self-intersecting
closed geodesics.

4



The rough idea of the proof that Series gives3 is to use a change of marking
(in the Teichmüller theory sense of the word) to position a self-intersecting
geodesic in such a way that it has a subsegment that meets our ideal trian-
gulation (or rather, ideal quadrilateral tesselation) of H in one of two ways
— both of which lead to hitting the length 4 horocycle on S0.

• Haas shows that the above two lemmas hold for any 1-cusped torus, not
just S0 [Haa87, Haa88].

Step 2 is to use these simple closed geodesics to reproduce Markoff forms, albeit
not yet as stated in Markoff’s theorem.

• Given a matrix M :=
[
a b
c d

]
∈ ρ0(π1(S0)) corresponding to a geodesic in H

that projects to a simple closed geodesic on our 1-cusped torus, the ideal
fixed points of M are given by:

ξM =
(a− d) +

√
(a− d)2 − 4bc
2c

and ξ ′
M =

(a− d) −
√
(a− d)2 − 4bc
2c

.

We know from Step 1 that every Markoff irrationality arises from ξM or
ξ ′
M for some M.

• Using the universal cover, we know that |ξM − ξ ′
M| < 2 × 3

2 = 3. And it’s
easy to algebraically check that

|ξM − ξ ′
M| =

√
(TrM)2 − 4
QM(1, 0)

=

√
∆(QM)

QM(1, 0)
,

for the quadratic form QM(x,y) = cx2 + (d− a)xy− by2. Therefore,

QM(1, 0) > 1
3

√
(TrM)2 − 4 = 1

3

√
∆(QM).

• For any g ∈ SL2(R),

QM(x,y) = QgMg−1(g · (x,y)). (1)

And for any coprime pair (x,y) ∈ Z× Z, the matrix[
a b
−y x

]
, where ax+ by = 1,

is a matrix in SL2(Z) taking (x,y) to (1, 0). Therefore,

min
(x,y)∈Z2

QM(x,y)√
(TrM)2 − 4

= min
(x,y)∈Z2

gcd(x,y)2 ×QgMg−1(1, 0)√
(TrM)2 − 4

>
1
3

.

Which is precisely the statement that these Markoff forms QM must satisfy
(as per Markoff’s theorem).

3I think that it might be her own proof, since Haas’s seems to be a bit more topological,
although to be honest, I don’t understand his proof yet.
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I don’t yet know how to do step 3, but it’s certainly a reasonable result. This is
in light of the fact that the Teichmüller space of 1-cusped torus may be modelled
on a semi-algebraic set given by the defining equation for Markoff triples (with a
minor renormalisation) [Hua14, Prop 3.8].

4. Generalisations

Generalisation 1: conjugation.

The monodromy representation ρ0 given for S0 is by no means canonical, and
we can obtain an immediate generalisation by conjugating this monodromy rep-
resentation by a matrix

g =

[
α β

γ δ

]
∈ SL2(R).

Let the skewed lattice g · (Z× Z) denote the rank 2 Abelian group

g · (Z× Z) = {m(α,γ) + n(β, δ) | m,n ∈ Z} .

Proposition 4. Given an arbitrary real quadratic form

f(x,y) = ax2 + bxy+ cy2 with discriminant ∆(f) = b2 − 4ac,

there are pairs (x,y) ∈ g · (Z× Z) such that

0 <
|f(x,y)|√

∆(f)
6 1

3
except when f is a skewed Markoff form.

There are countably many skewed Markoff forms fi(x,y) and they each take the form:

fi(x,y) =
(
δ2p+ γδ(2a− 3p) + γ2(b− 3a)

)
x2

+(2αγ(3a− b) + (αδ+ βγ)(3p− 2a) − 2βδp) xy

+
(
β2p+ αβ(2a− 3p) + α2(b− 3a)

)
y2,

where 0 < a < p
2 ,a ≡ ±r mod p,bp− a2 = 1 and (p,q, r) is a Markoff triple. That

is, a triple of positive integers satisfying:

p2 + q2 + r2 = 3pqr.

Proof. We know from Theorem 1 that for every matrix M ∈ ρ0(π1(S0)) � SL2(Z)
that corresponds to a simple closed geodesic,

QM(m,n) > 1
3

√
∆(QM) for every (m,n) ∈ Z× Z.

Since (1) holds for any g ∈ SL2(R),

min
(m,n)∈g·(Z×Z)

QgMg−1(m,n)√
∆(QgMg−1)

= min
(m,n)∈g·(Z×Z)

QM(g−1 · (m,n))√
(Tr(gMg−1))2 − 4

= min
(m′,n′)∈Z×Z

QM(m ′,n ′)√
∆(QM)

>
1
3

.
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By the same computations, quadratic forms which are not skewed Markoff forms
have minima 6 1

3 .

Denoting M component-wise by [m11 m12
m21 m22 ], we know that

QM(x,y) = m21x
2 + (m22 −m11)xy−m12y

2

and hence

m21 = p, m22 −m11 = 3p− 2a and m12 = 3a− b (2)

for some Markoff triple (p,q, r). Substituting (2) into QgMg−1 yields the desired
presentation for skewed Markoff forms.

There are two other ideas that I’d like to try:

Generalisation 2: use 1-cusped tori which aren’t isometric to S0. This shouldn’t be
too hard, although there are two potential issues here: first, I’m not sure yet how
to characterise the ideal points; the second lies in the fact that whereas SL2(Z)
was a isometry supergroup of ρ0(π1(S0)) that let us take any coprime pair (m,n)
to (1, 0) — I’m not sure yet if this will be an issue.

An update: I did manage to (more-or-less) do this. But it turns out that it’s
already a reasonably well-known [Sch76, Sch77].

Generalisation 3: use 3-cusped projective planes? I make this suggestion because
of the Markoff quads that Norbury and I discovered/defined [HN13]. I’m not
sure yet how to geometrically make use of these gadgets to obtain some type of
Markoff theorem. Perhaps there’s some scope for looking at pairs of ideal points
or something?
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