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1 Introduction

1.1 A Physicsy rant

Many papers about mirror symmetry have a bit of physicsy jargon in it, and a
part of this first section is to say a little about the sorts of mathematical objects
physicists care about in field theory 1:

An electric field is a nice vector field. That is: it’s a map E : R3 → R3 of
the form:

(x, y, z) 7→ a(x, y, z)∂x + b(x, y, z)∂y + c(x, y, z)∂z,

satisfying additional conditions (hence the word nice) imposed by physical con-
siderations. Note that this electric field may be paraphrased as a slightly differ-
ent map:

Ê : R3 → TR3 = R3 × R3 = R6, (x, y, z) 7→ (x, y, z, a, b, c).

In physics, a field(P) 2 is a “nice” section of a bundle ξM over M . In particular,
our electric field Ê is an example of a field. In maths, we use the notation
Γ(M, ξM ) to mean the space of all sections of the bundle ξM over M . So, the
fields that we care about in a given field theory(P) are elements of such spaces
of sections. The physics governing a particular field theory then places addi-
tional constraints (i.e.: niceness) on the types of sections that we’d like to study.

The energy(P) of an electric field is

Energy(E) := c

∫
R3

|E|2 dx ∧ dy ∧ dz.

This is an example of an action(P), which is a function from { fields } → R
(you’ll often hear mathematicians calling this a functional). Note that in order
for the energy of an electric field to be finite, we would require that |E| be
square-integrable. This is an example of a niceness condition that we might
impose on the space of sections/fields, albeit imposed due to mathsy reasons in
this particular case.

Fields and actions are the cornerstones of a Field Theory. Adjectives placed
in front of the words “Field Theory” such as “classical”, “quantum” or “con-
formal” specify properties on the fields and actions of this particular field theory.

Mirror symmetry arises from a field theory called (type II) superstring theory
(which should perhaps be called superstring field theory). Here’s the rough idea:

There are five different candidate superstring theories for describing our uni-
verse. They are each of 10 = 6 + 4 dimensions. The last 4 are the usual

1possibly without realising that they care about these objects
2Look, let’s try to put a (P) after physicsy jargon.
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space-time dimensions — these are big in the sense that they’re macroscopic
and we can sense them (or at least Einstein could). The remaining 6 are prob-
ably very very small and hence we don’t really experience them in real life. Of
course, it’s also possible that the remaining 6 dimensions are so big that they
seem flat to us and hence we don’t experience them in real life. Or possibly, it’s
just really flat near Earth, and it’s actually a combination of these two extremes.
Although Yau seems to believe that they should be small — probably due to
Occam’s razor-y reasons.

There is this picture that people often invoke to describe string theory. Imag-
ine a “string” in the universe, so a circle. Now imagine it evolving in time,
sometimes getting bigger, sometimes smaller, sometimes pinching and splitting
into two or more strings and perhaps eventually coming back together into one
string and vanishing altogether. This family of strings traces out a surface Σ in
our 10-dimensional universe M (6) × R4.3

I (Yi) think that the idea is that manner in which Σ embeds in the 6 small
dimensions denoted by M = M (6) governs the type of particle that this string
represents (okay, this may or may not specifically be for Fermions and not
Bosons, I don’t understand the language well enough yet to discern if I’m com-
pletely wrong –Yi).

So, given that discussion, let’s consider the map f : Σ → M obtained by pro-
jecting the embedding of Σ in our universe down to these 6 small dimensions.
Such a map may be paraphrased as:

(f̂ : Σ→ Σ×M) ∈ Γ(Σ,Σ×M) (1)

p 7→ (p, f(p)) (2)

which is a section of the trivial bundle Σ×M →M . 4 So f is possibly a field(P)
in some field theory governing the “types” of particles that strings might be.

3Thara thought that this should have been 11-dimensions. This is true in some sense, in
that the 11-dimensional M-theory is meant to be a unifying theory for all 5 of these superstring
theories. So, you should be able to obtain each of these 5 superstring theories by taking some
sort of limit of M-theory.

4Note that this is slightly inconsistent notation to before, since we’re using the total space
Σ×M to denote the actual trivial bundle.
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To have a field theory, however, we need an action(P). And in this setup, the
desired action is (very roughly) taking the area of f(Σ) ⊂M .

The extra physics considerations that are imposed in type II superstring theo-
ries, means that M is Calabi-Yau (most of the time). This roughly means the
following:

• M is (Ricci) flat.

• M has a Kähler structure. (Referred to as the A-model)

• M has a complex structure. (Physicists refer to this as the B-model)

Put all this together and (maybe) you get super(symmetric) conformal field
theories! (SCFT)

Let’s just talk about all this stuff as if we knew what we were talking about and
see how things go. In future weeks, I hope that we will work out what all this
means.

Consider a Calabi-Yau manfold (M,J, ω) (which we assume from now on is
6 dimensional), where J is the complex structure (it tells us how to rotate by
π
2 on the tangent space) and ω is the Kähler structure (it tells us how to find
areas). They have this additional property of admitting two types of structural
deformations, so as to obtain families of different Calabi-Yau manifolds.

A-model / Kähler structure B-model / C-structure
We can change the Kähler structure We can change the complex structure
ω by adding elements of H1,1(M) J by adding elements of H2,1(M)

Calabi-Yau manifold (M,J, ω) would admit slightly different fields(P) and a
slightly different action(P). That is, we get a super conformal field theory.

On the other hand, given a SCFT, does there exist a unique Calabi-Yau mani-
fold M that induces this SCFT?

In general: no.

In fact, most of the time we instead get two intricately related Calabi-Yau
manifolds M and M̃ . How these two manifolds are related is given by mirror
symmetry.
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1.2 Philosophy

Here’s a little diagram we drew on the board:

M

�&

M̃

x�

geometric properties

��
SCFT // physical properties

The idea is that the physical properties of a SCFT are determined by geometric
properties of either one of these inducing Calabi-Yau manifolds. Therefore, the
fact that M and M̃ impose the same SCFT means that their own geometric
properties should closely correspond.

So how are M and M̃ related? One example is that the Euler characteris-
tic χ(M) of M is the same as −χ(M̃). Which is actually a corollary of our
second example of a relationship:

Hp,q(M) ∼= H3−p,q(M̃).

The symbols Hp,q denote the Dolbeault cohomology of a manifold.Roughly
speaking, it lets us break up the cohomology of a manifold more finely by
keeping track of holomorphic and antiholomorphic parts of the cohomology -
note that this explanation assumes that we’re thinking of cohomology in terms
of differential forms a la DeRham cohomology. As an example, the relationship
between the normal cohomology of M and Hp,q is as follows:

H3(M) = H3,0(M)⊕H2,1(M)⊕H1,2(M)⊕H0,3(M)

Mirror symmetry then tells us these respective summands are the same as:

H0,0(M̃)⊕H1,1(M̃)⊕H2,2(M̃)⊕H3,3(M̃).

We will see pictures that look like as follows:
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For M :
1

0 0

0 101 0

1 1 1 1

0 101 0

0 0

1

For M̃ :
1

0 0

0 1 0

1 101 101 1

0 1 0

0 0

1

These are called Hodge diamonds and those numbers denote the dimensions of
the vector spaces Hp,q. The fact that these diagrams are the same up to rota-
tion is the most commonly cited origins of the name “mirror symmetry”.
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Now, not only are these cohomologies isomorphic, but mirror symmetry pre-
dicts that triple products on these cohomologies are also preserved!

On the A-model side, if ωi ∈ H1,1(M) then we define the triple product

〈ω1, ω2, ω3〉 =

∫
M

ω1∧ω2∧ω3+
∑

β∈H2(M,Z)6=[0]

nB

∫
β

ω1

∫
β

ω2

∫
β

ω3(
e2πi

∫
β
ω

1− e2πi
∫
β
ω

).

Here nβ is the number of genus 0 surfaces in M representing the cohomology
class β.

On the B-model side, if θi ∈ H2,1(M) then we define the triple product

〈θ1, θ2, θ3〉 =

∫
M̃

Ω ∧∇θ1∇θ2∇θ3Ω.

The ∇’s are the Gauss-Manin connections5. It turns out that both of these
triple products are equal!

By studying the deformation of a family of Calabi-Yau manifolds on these two
models and the corresponding deforming triple products on these two sides, we
can obtain these following correspondence of geometric structures of M and M̃ :

For the A-model we get:

5+n1q+8(n2 +
n1

8
q2 +27(n3 +

n1

27
)q2 +27(n3 +

n1

27
q3 +64(n4 +

n2

8
+
n1

64
)q4 + . . .

where the ni are the number of degree i spheres (rational curves) in M .

This is equal to the B-model terms:

−c1 − 575
c2
c2
q − 1950750

2

c1
c22
q2 − 1027749000

6

c1
c33
q3 − 74486048625000

24

c1
c33
q4 + . . .

We can then work out that c1 = −5 and thus n1 = 2875 which is a classical
result but is still pretty cool! It tells us the number of CP1’s in M . For this
example M is

{[X1 : X2 : X3 : X4 : X5] ∈ CP4 | X5
1 +X5

2 +X5
3 + x5

4 +X5
5 = 0}.

Its dual manifold, M̃ is (the resolution of) M quotiented by Z3
5 acting on the

last three coordinates in CP1 by multiplying by the 5-th roots of unity.

We can work out that c2 = 1 and n2 = 609250. However, from n3 and onwards,
the numbers are new. For example n3 = 317206375 and n4 = 24246753000.

5Yi — I don’t understand the notation yet, it was taken from another set of notes, let’s
change/edit this once we understand it.
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1.3 Bits at the end

We will also learn a bit about homological mirror symmetry (due to Kontsevich).
The strategy is to show that the Fukaya category of M (whatever that is) is the
same as the derived category of coherent sheaves of M̃ .

Example 1.1 (The mirror dual for T 2). Let τ, t ∈ C such that imτ, imt > 0.
The Calabi-Yau manifold (Eτ,t, Jτ,tωτ,t) where the elliptic curve/torus

Eτ,t :=
C

Z + τZ
.

The complex structure Jτ,t comes from C. The Kähler structure is −πtimτ dz ∧ dz.
Then Eτ,t and Et,τ are mirror duals.

Lastly, at some point we will talk about the SYZ conjecture due to Strominger,
Yau and Zaslow. In the heads of people who understand this better, it very very
very very roughly looks like two bundles over the same base.

T (n) // M (2n)

##

M̃ (2n)

{{

T̃n = Hom(T (n),C∗)oo

B(n)

Maybe this will make more sense to us later on.

2 Differential Topology and Geometry (21/3/13)

Speaker: Andrew Elvey-Price
Note-taker: Dougal Davis

2.1 Manifolds

A manifold is something which can be broken into pieces which look like pieces
of Rn. More formally, a manifold is a topological space M together with a
collection or atlas of coordinate charts {(Uα, ϕα)}, where {Uα} is an open cover
of M and each ϕα : Uα → Rn is a homeomorphism onto an open subset of Rn.
Given a manifold M with atlas {(Uα, ϕα)}, we define the transition functions

gαβ : ϕβ(Uα ∩ Uβ)→ ϕα(Uα ∩ Uβ)

gαβ = ϕα ◦ ϕ−1
β
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If all the transition functions are a thing, the manifold is called that thing. For
example, if all transition functions are smooth, we have a smooth manifold. If
the transition functions are holomorphic when we identify Rn = R2m with Cm,
we have a complex manifold.
It turns out that we can recover the whole manifold just from the sets ϕα(Uα)
and the transition functions gαβ . Notice that the transition functions satisfy

gαβ ◦ gβγ ◦ gγα = id

gαβ = g−1
βα

Example 2.1 (2-sphere). The 2-sphere is

S2 = {(x, y, z) ∈ R3 |x2 + y2 + z2 = 1}

Let

U1 = S2 \ {(0, 0, 1)} U2 = S2 \ {(0, 0,−1)}

and define

ϕ1(x, y, z) =

(
−x
z − 1

,
y

z − 1

)
ϕ2(x, y, z) =

(
x

z + 1
,

y

z + 1

)
The transition function is

g12 : R2 → R2

(u, v) 7→
(

u

u2 + v2
,
−v

u2 + v2

)
This function and its inverse g21 are smooth on ϕ2(U1 ∩U2) = R2 \ {(0, 0)}, so
this makes S2 a smooth manifold. If we identify R2 with C in the usual way,
we can write

g12(w) =
1

w

which is holomorphic on ϕ2(U1 ∩U2) = C \ {0}, so we can also think of S2 as a
complex manifold. S2 is often identified with C ∪ {∞} as a complex manifold.
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2.2 Vector bundles

A vector bundle is a manifold M together with a vector space at every point.
Locally a vector bundle should look like M × Rr.
More formally, a vector bundle over a manifold M is a manifold E with a func-
tion π : E →M such that for every point x ∈M , there exists a neighbourhood
U of x such that

π−1(U) ' U × Rr

The number r appearing here is called the rank of the vector bundle. We also
keep track of the vector space structure on the fibre π−1(x) ' Rr.
A vector bundle is trivial if it is globally isomorphic to M × Rr.

Example 2.2 (Vector bundles on the circle). Take

M = S1 = {(x, y) ∈ R2 |x2 + y2 = 1}

There are two non-isomorphic rank 1 vector bundles on the circle: the cylinder
and the Möbius strip.
We can write these explicitly as follows. For the cylinder, write

E = {reiθ |r 6= 0} = C× = R2 \ {(0, 0)}

π
��

S1 = {eiθ}

Take U = S1 so that

π−1(U) = E ' S1 × R
reiθ 7→

(
eiθ, log r

)
The vector space structure on the fibres comes from this isomorphism to S1×R.
Explicitly, addition and scalar multiplication are given by(

r1e
iθ + r2e

iθ
)

= r1r2e
iθ

λ
(
reiθ

)
= rλeiθ

For the Möbius strip, we can write

E′ = {(x, y) ∈ R2 | 0 ≤ x ≤ 1}/ ∼

π′
��

S1 = {(x, 0) ∈ R× {0} | 0 ≤ x ≤ 1}/ ∼

where (0, y) ∼ (1,−y).

12



2.3 Sections, tangent bundles and vector fields

Consider the circle S1 as in Example 2.2. The tangent bundle TS1 of S1 is the
set of pairs (p, v) such that p ∈ S1 and v ∈ R2 is a vector tangent to S1 at p.
More explicitly,

TS1 = {(cos t, sin t,−α sin t, α cos t} ⊆ R2 × R2

π
��

S1 = {(cos t, sin t)} ⊆ R2

Then TS1 is isomorphic to the trivial bundle on S1. For if we set

ρ : TS1 → S1 × R
(cos t, sin t,−α sin t, α cos t) 7→ (cos t, sin t, α)

then ρ is an isomorphism.
A section of this vector bundle is a function

f : S1 → TS1

such that

(cos t, sin t) 7→ (cos t, sin t, ?)

For example,

(cos t, sin t) 7→ ((cos t, sin t),−3(sin t, cos t))

(cos t, sin t) 7→ ((cos t, sin t), cos t(sin t, cos t))

are sections of TS1.
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In general, a section of a vector bundle π : E →M is a function

ν : M → E

such that π ◦ ν = idM . Notice that the Möbius strip in Example 2.2 has no
nonzero continuous sections.
It turns out that a nice way to look at the tangent bundle is through differential
operators. For M an arbitrary manifold, we define the tangent bundle TM of
M by

TM = {(p,Xp) | p ∈M,Xp is a differential operator at p}

A differential operator at p is a map

{smooth functions defined in a neighbourhood of p} → R

which in local coordinates looks like

Xpf =

(
a1

∂f

∂x1
+ a2

∂f

∂x2
+ · · · an

∂f

∂xn

)∣∣∣∣
p

, ai ∈ R

The local coordinates (x1, . . . , xn) onM give local coordinates (x1, . . . , xn, a1, . . . , an)
on TM . The transition functions are given by the chain rule.
We generally think of Xpf as the directional derivative of f in the direction Xp.
The sections of TM are sometimes called differential operators. We can also
think of a differential operator X as a map

{smooth functions onM} → {smooth functions onM}

which in local coordinates look like

Xf = a1(p)
∂f

∂x1
+ a2(p)

∂f

∂x2
+ · · · an(p)

∂f

∂xn

where the ai are now functions on M .

Example 2.3 (2-sphere). Recall the manifold S2 = C∪{∞} from Example 2.1.
We have the coordinate charts

ϕ1 : U1 = C→ R2 = C
(x, y) 7→ (x, y)

z 7→ z

ϕ2 : U2 = C ∪ {∞} \ {0} → R2 = C

(x, y) 7→
(

x

x2 + y2
,
−y

x2 + y2

)
z 7→ 1

z
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The corresponding coordinate charts for TS2 are

ϕ̃1 : U1 × R2 ⊆ TS2 → R2 × R2

(z;u, v) 7→ (x, y;u, v)

ϕ̃2 : U2 × R2 ⊆ TS2 → R2 × R2 = C× R2

(z;u, v) 7→
(
z;u

y2 − x2

(x2 + y2)2
+ v

−2xy

(x2 + y2)2
, u

2xy

(x2 + y2)2
+ v

y2 − x2

(x2 + y2)2

)
In terms of differential operators, we have

Xpf = (u, v)zf = u
∂f

∂x
+ v

∂f

∂y

for any smooth function f : U1 → R.

2.4 Constructing new vector bundles from old ones

In this section we will describe the following constructions on vector spaces.

1. Direct sum (V ⊕ U);

2. Dual (V ∗);

3. Tensor product (V ⊗ U); and

4. Hom construction (Hom(V,U) = V ∗ ⊗ U)6.

In our heads, vector bundles over M are just vector spaces over the points of M
with some nice gluing properties that pieces all the vector spaces together. From
linear algebra, we are familiar with the above constructions for vector spaces.
The corresponding definitions of these constructions for vector bundles is then
to do each thing fibrewise. Essentially this is what this little section is about
and if that makes sense to you you can probably skip this bit for now (like I
would if I wasn’t typing these notes). However, drawing matrices is always fun!

2.4.1 Transition Maps

Let E →M be a vector bundle. Let Uα×Rn and Uβ×Rn be local trivialisations
of the bundle E over coordinate patches of M . For simplicity, we’ll also call the
coordinate patches Uα and Uβ .
We have two pieces of date. We have a transition map

gβα : Uα → Uβ ,

6where the equality holds as long as the bundles have finite rank
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which comes from the underlying manifold structure of M . We also have a
transition map

sβα : Uα × Rn → Uβ × Rn

which tells us how to transition from fibre to fibre. In particular, at each x ∈ Uα,
the map sβα(x) : Rn → Rn is a linear transformation (a matrix!). These are
linear maps of the fibres. These satisfy the usual compatibiliity conditions that
one would expect.

2.5 Direct Sum

Let E and F be vector bundles over M . Recall that if E and F were vector
spaces (ie. vector bundles over a point), then the underlying set of the direct
sum is

E ⊕ F := {(u, v) | u ∈ U, v ∈ V }.

For vector bundles, we just have to keep track of the base space as well.

E ⊕ F := {(x, (v, u)) | x ∈M,v ∈ Ex, u ∈ Fx}.

Here Ex is notation for the fibre above x. Similarly for Fx. Once we have the
underlying set, the transition functions should come naturally. Do it bit by bit!

2.6 Dual bundles

Recall that the dual of a vector space V is V ∗ := HomV ect(V,R). If we write
vectors in V as column vectors, then we can write elements of the dual space
as row vectors. Then a dual vector [y1, . . . , yn] applied to a vector in V is just
multiplication

[y1, . . . , yn]

 x1

...
xn

 = x1y1 + . . .+ xnyn.

For vector bundles, the fibres of the dual bundle are the dual of the original
fibres.
We can also define the transition maps. Let fVx → R be a dual fibre. Then

s∗αβ(x)(f) = f ◦ sβα.

It’s also useful to think of what things look like has matrices. We have

[s∗αβ(x)] = [sβα(x)]T = ([sαβ(x)]T )−1.

In a bit more detail,

[s∗αβ(x)]

 y1

...
yn

 = ([y1, . . . , yn]sβα(x))T = sTβα

 y1

...
yn

 = [s−1
αβ ]T

 y1

...
yn

 .
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2.6.1 Cotangent bundle

The cotangent bundle is the dual to the tangent bundle. We denote it by T ∗M .
As sets we can write the tangent bundle and cotangent bundle as

TM = {(m, ( ∂

∂x1
, . . . ,

∂

∂xn
)at m) | m ∈M}; and

T ∗M = {(m, (dx1, . . . , dxn)) | m ∈M}.

The elements of the fibre should really be the span of what is written down. In
particular a basis for the cotangent bundle is dx1, . . . , dxn.
The point is just like we can think of elements of TM as differential operators,
we can think of elements of the cotangent bundle as differential forms. We have
the relation dxj

∂
∂xi

= δij .
Here are some matrices to convince you we have the right definitions.

∂x1

∂y1
. . . ∂xn

∂y1
...

...
∂x1

∂yn
. . . ∂xn

∂y1




∂
∂x1

...
∂
∂xn

 =


∂
∂y1
...
∂
∂yn




∂x1

∂y1
. . . ∂x1

∂yn
...

...
∂xn
∂y1

. . . ∂xn
∂yn


 dy1

...
dyn

 =

 dx1

...
dxn


2.7 Tensor Product

Recall the definition of tensor products for vector spaces. Let u1, . . . , un be a
basis for the vector space U and let v1, . . . , vn be a basis for V . Then a basis
for the tensor product U ⊗ V is

{vi ⊗ vj | 1 ≤ i ≤ n, 1 ≤ j ≤ n}.

In particular, dim(U ⊗ V ) = dim(U) × dim(V ). It is often useful to think of
tensor products in terms of matrices.
In terms of elements, if we let u = (u1, . . . , un) and v = (u1, . . . , um), then we
can think of u⊗ v as the matrix

[u1, . . . , un]⊗

 v1

...
vm

 =

 u1v1 . . . unv1

...
...

u1vm . . . unvm


If instead we wrote v =

∑
xivi and u =

∑
yjuj then u ⊗ v is

∑
xiyj(vi ⊗ uj)

which is what we would get from “expanding out” the brackets.
If we write our vectors in this form, then if we think of these vectors as sitting
on fibres above a point x ∈ M of a vector bundle E → M , then we can define
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our transition functions as

sE⊗Fαβ (x)(
∑
i,j

xi,jvi ⊗ uj) =
∑
i,j

xi,js
E
α,β(x)(vi)⊗ sFα,β(x)(uj).

2.7.1 Hom construction

We didn’t talk too much about this except to note that in finite dimensional
cases, HomR(U, V ) ∼= U∗ ⊗ V .

2.7.2 Symmetric and antisymmetric (wedge) products

Lastly we noted that we can write tensor products of bundles of themselves as
a direct sum of symmetric parts and anti-symmetric parts. In terms of vector
spaces, we have

V ⊗ V = (V ⊗S V )⊕ (V ⊗a V ).

In the symmetric tensor product, we have x⊗s y = y⊗s x, so a basis for V ⊗s V
is

{vi ⊗s vj | i ≤ j}.
In the antisymmetric product, we have the relation x⊗a y = −y⊗a x, so a basis
for V ⊗a V is

{vi ⊗a vj | i < j}.
From this we see that V ⊗sV is n(n+1)/2 dimensional and V ⊗aV is n(n−1)/2
dimensional so that their direct sum is n2 dimensional. So at least we have the
dimensions right.
For an explicit isomorphism, we can define φ : (V ⊗s V )⊕ (V ⊗a V ) → V ⊗ V
by

(avi ⊗s vj , bvi ⊗a vj) 7→
a+ b

2
vi ⊗ vj +

a− b
2

vj ⊗ vi.

The inverse send x⊗ y 7→ (x⊗s y, x⊗a y).
Just like for tensor products, we can define the symmetric and anti-symmetric
products for vector bundles. The anti-symmetric product will be the more
interesting one to us. In the literature it is often called the wedge product and
is denoted

E ∧ E.
We can iterate this process to get the pth wedge product, which we denote by

∧p = E ∧ . . . E.
A basis for the fibres over a point has the form

{vi1 ∧ . . . ∧ vip | i1 < . . . < ıp}.
Thus ∧pE is a rank

(
n
p

)
vector bundle. An interesting thing happens when

p = n, the dimension of the base manifold M . For example ∧nT ∗M has basis

dx1 ∧ . . . ∧ dxn.
This gives a notion of volume on our manifold and should remind you of the
determinant! Buzz word: volume form.
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2.7.3 Pullback bundle

Given a vector bundle E over N and a smooth map f : M → N we can form
the pullback bundle f∗E →M which is a bundle over M . Here is a picture:

f∗E //

��

E

��
M

f
// N

The fibre over a point p ∈M of f∗E is the fibre over f(p) in N .

2.7.4 Kernels and cokernels

Give a morphism of vector bundles f : V → U We can form the kernel bundle
ker(f) which is a bundle over the base of V and the cokernel bundle which is a
bundle over the base of U .
In terms of vector spaces, the kernel is the kernel of f (null space if we think f
is a matrix) and the cokernel is U/im(f).

2.8 Metrics

In this section, we will define a notion of metric that will allow us to talk about
lengths of curves on M .
A metric g associates to each p ∈M an inner product

gp : TpM × TpM → R

varying smoothly with p, i.e. g : TM × TM → R is smooth.
If c : [0, 1]→M is a curve, then we define the length of c to be

length(c) =

∫ 1

0

‖c′(t)‖dt =

∫ 1

0

√
gc(t)(c′(t), c′(t))dt.

In local coordinates x1, . . . , xn, we may consider g as a matrix [gij ], where

gij = g(
∂

∂xi
,
∂

∂xj
).

Note that in these coordinates, g(X,Y ) for two vector fields X,Y may be calcu-
lated by writing X and Y in terms of local coordinates as

∑
αi

∂
∂xi and

∑
βj

∂
∂yj

and then computing the matrix multiplication:

[α1, . . . , αn]

 g11 . . . g1n

...
...

gn1 . . . gnn


 β1

...
βn

 .
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Example 2.4 (Spherical coordinates). Let S2 ⊂ R3 be the unit sphere. We
have a parameterization r : (0, 2π)× (0, π)→ S2 ⊂ R3 defined by the equation

r(θ, ϕ) = (sinϕ cos θ, sinϕ sin θ, cosϕ).

In θ, ϕ coordinates, consider the metric defined by:

[gij ] =

[
rθ.rθ rθ.rϕ
rϕ.rθ rϕ.rϕ

]
=

[
sin2 ϕ 0

0 1

]
Then rϕ.rθ = g( ∂

∂ϕ ,
∂
∂θ ) and so forth. Note that this metric enables us to calcu-

late the lengths of paths or the areas of regions on the sphere considered as the
unit sphere in R3.

Sometimes it is convenient to use Einstein notation.

vi∂i :=

m∑
i=1

vi∂i.

If we fix a vector in our tangent space, then we can define an element of the
cotangent space using g.

gp(v,−) : TpM → R
The map v 7→ gp is an isomorphism from TpM → (TpM)∗. This is easily seen
from the local coordinates matrix multiplication.

2.9 Connections

Let γ : [0, 1]→M be a path with γ(0) = γ(1) = q. The idea of a connection is
the it “connects” the tangent spaces

TpM
∼=−→ TqM

by associating to each vector vp with a vector vq.
In Euclidean space, we have the notion of parallel transport. For example, take
the vector (a, b) ∈ TpR2 = R2 to (a, b) ∈ TqR2 = R2.
On manifolds, this is a bit trickier. Can we construct a connection so that on
in local coordinates on every patch, parallel transport is given by this intuitive
idea of (a, b) 7→ (a, b)? The answer is no, and so we need to say what it actually
means to have parallel transportation. A vector field V is parallel transported
along a path γ if:

d

dt
Vγ(t) = 0.

And we say that V is parallel transported along a vector field W if V is parallel
transported along all the integral curves of W .
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2.9.1 Affine Connections

Recall that Γ(TM) is our notation for sections of the tangent bundle. In other
words, they are vector fields.
An affine connection is a map

∇ : Γ(TM)× Γ(TM)→ Γ(TM).

We denote ∇(X,Y ) by ∇XY and this is the generalisation of the derivative of
Y in the direction of X.

This motivates us to impose the following conditions upon ∇: if f, g ∈ C∞(M),
X,Y, Z ∈ Γ(TM), then

1. ∇fX+gY (Y + Z) = f∇XZ + g∇Y Z;

2. ∇X(Y + z) = ∇XY +∇XZ; and

3. ∇X(fY ) = X(f)Y + f∇XY .

If X = xi∂i, Y = yj∂j , then

∇XY =

n∑
j=1

X(yj)∂j +

n∑
i=1

xiyj∇∂i∂j

As an example, if M = R2 consider the connection

∇VW = [dW ][V ],

where [dW ] denotes the Jacobian of the vector field W considered as a map
from M = R2 to its ”globally parallelised” vector space R2. This is precisely
the connection that takes (a, b) to (a, b) that first motivated all this parallel
transportation business. In particular, the vector field V is parallel transported
along W if and only if W is a constant vector field.

2.9.2 Metric connection

The metric (or Levi-Civita) connection for (M, g) is the unique affine connection
compatible with the metric, that is:

g(v, w) = g(v′, w′).

In particular, the Levi-Civita connection is the torsion-free metric connection.
Meaning that the parallel transportation of vectors does not “twist” unneces-
sarily.
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2.10 Curvature

We drew a picture of a sphere. If you pick a vector at the north pole, walked to
the equator, walked a bit along the equator and then walked back to the north
pole, all while trying to hold your vector pointing in the same direction, you
will find that your vector is now pointing in a different place.
What we have done is try to parallel transport our vector along a closed loop
in S2. How much the vector changes will then be a measure of the curvature.
The curvature of a manifold M is a map R(., .). : Γ(TM)3 → Γ(M). Intuitively,
this is what you do.

1. Start with vectors X,Y, Z.

2. Extend X and Y to vector fields so that the flow along X for t, Y for t,
X for −t, Y for −t lets you get back to the same point.

3. Go along this parallelogram and see how Z parallel transports. Then take
the limit as t→ 0.

The formula is

R(X,Y )Z = ∇x∇Y Z −∇Y∇XZ −∇[x,Y ]Z.

2.11 Differential Forms

A k-form ω on M assigns to each p ∈M a multilinear, antisymmetric function

ωp : TpM × . . .× TpM → R

where there are k copies of TpM in the domain.
We will not go into much detail. Instead, we will say what differential forms
look like on R3.

0-form f ∈ C∞(M).

1-form f1dx+ f2dy + f3dz.

2-form f3dx1 ∧ dx2 + f1dx2 ∧ dx3 + f2dx3 ∧ dx1.

3-form fdx1 ∧ dx2 ∧ dx3.

There are no k-forms for k ≥ 4. We denote the set of k-forms (which is easily
made into a vector space) by Ωk(M).
Differential forms are closely related to determinates. For example a formula
for a 2-form looks like

f2dx2 ∧ dx3(v, w) = f2.

∣∣∣∣ dx2(v) dx2(w)
dx3(v) dx3(w)

∣∣∣∣ .
The Hodge star is ∗dz = dx ∧ dy.
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Differential forms are the right thin to integrate over. We can integrate n form
over Mn. We can integrate a (n−1)-form over (n−1) dimensional submanifolds
of Mn and so on. For example∫

R3

fdx1 ∧ dx2 ∧ dx3 :=

∫
R3

fdx1dx2dx3.

On (M, g) there is a volume form, which is a top dimensional form locally given
by

dV =
√

det(gij) dx
1 ∧ . . . dxn.

For example, if M is the 2-sphere and gij =

[
sin2 ϕ 0

0 1

]
, then∫

S2

dV =

∫ π

0

∫ 2π

0

sinϕ dθdϕ = 4π.

2.11.1 de Rham Cohomology

We can define the exterior derivative d : Ωk(M) → Ωk+1(M) for k ∈ Z≥0.
Instead we just give an example of how to compute it in an example.
Let f(x, y) = x2y be a 0-form. Then

df = fxdx+ fydy = sxydx+ x2dy.

Also

d(df) = (
∂

∂x
(2xy)dx+

∂

∂y
dy) ∧ dx+ (

∂

∂x
(x2)dx+

∂

∂y
(x2)dy) ∧ dy = 0

The fact that d2 = 0 is not unique to this example. This gives us a chain
complex

0→ Ω0 d0−→ Ω1 d1−→ . . .
dn−1

−−−→ ωn → 0.

We define the kth de Rham cohomology of M to be the vector space

Hj
dR(M ;R) :=

kerdk

imdk−1

As an example, H0(T 2) = R, H1(T 2) = R2 and H2(T 2) = R.

3 Projective Varieties

CPn is the set of lines through the origin in Cn+1. We can think of it is

CPn = (Cn+1 \ 0)/C×.

Here C× is the group of units of C and acts by multiplication. This way of
representing CPn also tells us one way that we could topologise it.
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In fact, CPn is a manifold. It’s coordinate charts can be defined as follows.
Define ui = {(x0, . . . , xn) | xi 6= 0}. Then

ϕ((x0, . . . , xn)) := (
x0

xi
, . . . ,

xi−1

xi
, x̂i,

xi+1

xi
, . . . ,

xn
xi

).

For CP1 the charts look like

U0 = {(x0, x1) | x0 6= 0}

U1 = {(x0, x1) | x1 6= 0}

which should remind you of charts for S1.
Remark: The linear transformations on Cn+1 are GL(n+ 1,C). If we allowing
for scaling, then we get PGL(n + 1,C) as all the holomorphic automorphisms
on projective space.

3.1 Varieties in CPn

The zero sets of a homogenous polynomial in n + 1 variables is a projective
subvariety of CPn. For example

{[X,Y ] | X2 +XY + Y 2 = 0}.

Example 3.1. A general degree 3 homogeneous polynomial looks like

f = a1X
3 + a2Y

3 + . . .+ a10Y Z
2

We can reduce this to one parameter. This should be intuitively clear. At the
moment, we have 10 parameters. Since PGL(3,C) is 8 dimensional (elements
are 3 by 3 matrices up to a constant) so we can reduce down to 2 parameters.
The final parameter that we can remove comes from the fact that our variety is
projective.
This is an elliptic curve with structure parameter an algebraic function of pa-
rameters [UM WHAT DID I JUST TYPE? - I think that you wanted to be
talking about this 1-parameter space of elliptic curves, and that this space is
parametrised by the j-invariant. But I dun have your notes. - Yi.]

Sometimes, you can get more parameters. For example, a similar dimension
count tells us that a degree 5 polynomial in CP4 has 101 parameters. To get
this number, you can do the same sort of dimensional counting as before. Try
it!

3.2 Weighted projective varieties

Let C× be the multiplicative group of units (non-zero elements) of C. Given
(w0, . . . , wn) ∈ Zn, we can define an action of C× on Cn+1 by

λ.(x0, . . . , xn) = (λw0x0, . . . , λ
wnxn).
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We can define the weighted projective spaces to be the quotient

CPn(w0,...,wn) :=
Cn+1 \ {0}

C×
.

Unfortunately, the C× action is not free. For example, let’s consider CP3
(w0,w1,w2,w3).

If w0 6= 1 we can choose λ 6= 1 such that λw0 = 1 so that

λ(x0, 0, 0, 0) = (λw0x0, 0, 0, 0) = (x0, 0, 0, 0).

Thus in our quotient, there is a Z/w0Z singularity at (1, 0, 0, 0). This means
the tangent space looks like C4/ Z

w0Z .
However, because this singularity has codimension 3, this is okay. In general,
these types of singularities have codimension n and so subvarieties in general
position almost always miss these singularity points (by some version of Sard’s
theorem).
There is a worse possibility than this. Let’s look at the same example, but
suppose that gcd(w1, w2) 6= 1. We can choose k 6= 1 so that k|w1 and k|w2.
Now choose λ so that λk = 1. Then

λ.(0, x1, x2, 0) = (0, λw1x1, λ
w2x2, 0) = (0, x1, x2, 0).

This is now a codimension 2 singularity and cannot generally be avoided. There
is however a way to treat this problem by a process known as “smoothing”
which we might look at in future.
Away from these types of singularities, we expect that in general, subvarieties
of CPn(w0,...,wn) to be smooth if gcd(wi, wj) = 1 for i 6= j.

3.3 Toric Varieties

Take CN and an action by (C×)m where m < N . Take away a subset U fixed
by a continuous subgroup of (C×)m. We then get a toric variety given by

CN \ U
(C×)m

.

The circle action is by the group (C×)N−m.

Example 3.2. Consider C3 with U = {(x, 0, 0) | x ∈ C}. (C×)1 acts on C3 by
λ(x, y, z) = (x, λy, λz).

SOME PICTURES FOR YI TO DRAW. THIS IS THE BIT WHERE WE
REPRESENT THE TORIC VARIETIES BY DIAGRAMS. SINCE I DON’T

REALLY GET IT, IT’D BE GOOD IF SOMEONE EXPLAINED IT
CLEARLY TOO.
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4 Sheaves

Let X be a topological space and Top(X) be the category of open sets of X
with morphisms being inclusions. Let C be another category. Usually for us
it will be an abelian category like groups or rings. A sheaf is a contravariant
functor from Top(X) to C satisfying

1. (Locality). Let {Ui} is an open cover of an open set U . If s, t ∈ F (U),
then s|Ui = t|Ui =⇒ s = t.

2. (Gluing). Let {Ui} be an open cover of U . Suppose there exists si ∈
F (Ui) such that si|Ui∩Uj = sj |Ui∩Uj . Then there exists s ∈ F (U) so that
s|Ui = si for all i.

Here is a brief explanation. The contravariant condition means that for each
inclusion of open sets U ⊂ V , there is a map F (V ) → F (U) in C making the
following diagram commute.

U //

��

V

��
F (U) F (V )oo

We call elements of F (U) sections. We think of the map F (V ) → F (U) by
s 7→ s|U as restrictions.
For the locality condition, this says that if two coming from a bigger open set
agree on smaller open sets of a cover, then they must be equal. The second
condition says that if there are sections defined on open sets that agree on their
overlap, then they must have come from a section of a bigger open set. We can
glue the sections together.
The following examples should help make the notion of a sheaf clearer.

Example 4.1. Let M be a complex manifold. We will define O, the sheaf of
holomorphic functions. For an open set U of M , we define O(U) to be

{Holomorphic functions U → C}.

O defines a sheaf of rings, where multiplication and addition of sections is de-
fined point-wise. The restriction maps are actual restrictions. The locality and
gluing conditions are satisfied because holomorphicity is a local condition.

Let Z be the sheaf of locally constant integer valued functions. Let O∗ be the
sheaf of nowhere zero holomorphic functions. Each is a sheaf of abelian groups
(respectively additive and multiplicative). These sheaves fit naturally into a
short exact sequence

0→ Z→ O → O∗ → 0.

where the map Z → O is the obvious inclusion and O → O∗ is given by f 7→
e2πif . This example is important mainly because it illustrates what “exactness”
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means in the context of sheaves. This is subtler than one might näıvely imagine:
it does not mean that we get an exact sequence

0→ Z(U)→ O(U)→ O∗(U)→ 0

for each open set U : there exist non-vanishing holomorphic functions f on
subsets U of the complex plane which cannot be written globally (on U) as eg

for some holomorphic function g (alas, the logarithm is not so well behaved).
However, we can write f in this form in some small open neighbourhood of
any point in U and then invoke the gluing axiom to stitch these locally defined
functions together. We will have constructed a function on U which is locally
equal to f on each member of an open cover of U and so is equal to f by the
identity axiom for sheaves. Thus im(O) = O∗.
7

Exactness (just like any other property of sheaves) should thus be understood as
a local condition. It is worth noting that checking the exactness of a sequence
of abelian sheaves is equivalent to checking the exactness (in the usual sense
for Z-modules) of the induced sequence of stalks 8 at each point: this is not
very surprising in light of the example, since we verified “sheaf-surjectivity” by
checking that the map was eventually “set-surjective” on suitably small open
neighbourhoods.
Here is a very important example of a sheaf.

Example 4.2. Let E
π−→ X be a vector bundle. If U is an open set of X, then

a section is a map s : U → E such that π ◦ s(p) = p. Sometimes these are
called local sections if U 6= X. When U = X, we call these global sections.
Define Γ(U,E) to be the set of sections on U . Γ is the sheaf of sections of π.
It is a vector space valued sheaf. Addition and scalar multiplication are defined
point-wise, which is okay since the fibres are vector spaces.

4.1 Stalks

Sheaves have values on open sets. The point of a stalk is to be able to talk
about what our sheaf looks like at points of our space.

Definition 4.3. Let x ∈ X and F be a sheaf. The stalk of F at x is

Fx := lim
→
F(U)

where the limit is taken over all U that contain x.

The limit means that we identify sections which agree on small open sets con-
taining x. Another way to define the stalk is to let it be

{〈U, s ∈ F(U)〉}/ ∼
7For experts/pedants: you might worry that image of O could somehow fail to be closed

under such gluings (which are, after all, really being performed inside the sheaf O∗). There is
a sneaky application of the so-called ”sheaffification” functor involved in defining the image
of a sheaf map which rules out this sort of badness.

8See the next section.
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where we mod out by the equivalence relation 〈U1, f1〉 ∼ 〈U2, f2〉 if and only
if there exists 〈U, f〉 with U ⊂ U1, U ⊂ U2 such that f |U1 = f |U2 . Basically,
sections are equal if they agree on a smaller open set around x.
As an example, if F = O the sheaf of holomorphic functions, then Ox would be
the vector space of taylor expansions of holomorphic functions at x.

THIS IS THE BIT WHERE JAMES PUT UP AN EXERCISE. THERE WAS
SOME DISCUSSION SO MAYBE SOMEONE CAN SAY WHAT IT WAS

ALL ABOUT. AT THE MOMENT, I HAVE SOME SCATTERED
COMMENTS WHICH DON’T SEEM THAT IMPORTANT.

4.2 Čech Cohomology

In this section, we will define the Čech Cohomology of a space. Choose a
covering {Ui} of X. A q-simplex σ is an ordered set of q + 1 open sets

σ(U0,...,Uq)

such that |U | := ∩Ui 6= ∅. A j-boundary of σ is ∂jσ = σ(U0,...,Uj−1,Uj+1,Uq). The
boundary map is

∂σ =

q∑
j=0

(−1)j+1(∂jσ).

A cochain is then a map from q-simplices to elements of F (|σ|). Let

Cq(U,F )

be the set of all q-cochains. It is an abelian group.
There are some more notes that should probably go here, but due to some
interruptions, we never quite wrote things out properly. Basically you should
try to be comfortable with Cěch cohomology for the next section.

5 Line bundles

Recall that a line bundle over a complex manifold X is a rank 1 vector bundle
over π : E → X. This means that for each point x ∈ X, there is an open set
Uα ⊂ X containing x and an isomorphism

ϕα : π−1(Uα)
'−→ Uα × C.

We have transition functions

sαβ = ϕα ◦ ϕ−1
β : ϕβ(Uα ∩ Uβ)→ ϕα(Uα ∩ Uβ).

We can write sαβ(x, y) = (x, gαβ(x)(y)), where gαβUα ∩ Uβ → Ctimes is in
O∗(Uα ∩ Uβ). We observed previously that they satisfied the following condi-
tions.
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1. sαβsβα = 1; and

2. sαβsβγsγα = 1.

This says that these transition functions are 1 co-cycles.
Now suppose we had two isormophic line bundles. Given Uα, there are two
trivialisations ϕα and ϕ′α. We have the following commutative diagram.

π−1(Uα)
∼
ϕα
//

∼
ϕ′α %%

Uα × C

∼fα

��
Uα × C

where fα(x, v) = (x, gα(x)v), gα : Uα → C× ∈ O∗(Uα). We have have a similar
diagram

π−1(Uβ)
∼
ϕβ
//

∼
ϕ′β %%

Uβ × C

∼fβ

��
Uβ × C

Here’s a computation: sαβ = ϕα ◦ ϕ−1
β = fαϕ

′
β ◦ 1

fβ
(ϕ′β)−1 = fα

fβ
s′αβ . The

notation 1
fα
ϕ(x, v) means ϕ(x, 1

gα(x)v).

The upshot is that s′αβ = fα
fβ
sαβ . In particular fα

fβ
∈ Imδ0 where δ0 is the

δ0 in the cochain complex one gets when computing Cech Cohomology. Thus
isomorphic line bundles differ by a constant, which is in Imδ0 and so define the
same element of Ȟ1(X,O∗).

5.0.1 The Picard Group

The Picard group on X is the abelian group of all line bundles on X modulo
isomorphisms. It is denoted by Pic(X). There is an isomorphism

Pic(X) ∼= Ȟ1(X,O∗).

Our previous discussion show that we at least have a map from Pic(X) to
Ȟ1(X,O∗). The fact that this is an isomorphism shouldn’t be too hard to work
out after that.

6 Divisors

Let X be a variety. A Hypersurface is a codimension 1 subvariety of X defined
locally by the zero locus of holomorphic functions. In other words, we have a
decomposition of our hypersurface

H =
⋃
α

H ∩ Uα
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where H ∩ Uα = {z ∈ Uα | fα = 0}, where f : Uα → C with the property that
in Uα ∩ Uβ , the quotient fα

fβ
will be nonzero in O∗(Uα ∩ Uβ). The point is that

the zeroes of functions on different patches agree up to multiplicity on overlaps.
Here’s the cool bit. Since fα

fβ
: Uα ∩ Uβ → C× we can use these to define a line

bundle. In particular, these will form the transition functions of the line bundle.

Definition 6.1. A divisor is a formal sum, D =
∑
uiVi of hypersurfaces with

integer coefficients.

What we said earlier about hypersurfaces defining line bundles carries over to
divisors. That is, given a divisor, we can get a line bundle.

Example 6.2. Consider P1. A divisor is given by D = N + S where N and S
are the north and south poles respectively. Let Uα = P1 − S and Uβ = P1 −N
(both are isomorphic to C). We have

fα = u, fβ = 1/u and
fα
fβ

= u2.

The corresponding line bundle is the tangent bundle of P1. This is an exercise!

Here’s the point: You can get line bundles from divisors.

7 Algebraic and Differential Topology

For us, algebraic topology will mean homology and cohomology. We will be
doing a lot of cohomology calculations. We will move on to also include a dis-
cussion on characteristic classes, Morse theory and some mention of the moduli
space of curves.

7.1 Some cohomology calculations

Let T 2 = C/〈1, i〉 be the torus.
A few weeks ago9, we worked out that that the homology of T 2 was

H0(T 2,Z) = Z, H1(T 2,Z) = Z2 and H2(T 2,Z) = Z.

We can be a little more specific on the generators of the homology classes. Let
p be a point, L1 a circle in the 1 direction and L2 a circle in the i direction.

9We worked this out on the boards but did not write notes for it.
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The [p] is the generator of H0; [L1] and [L2] are the generators of H1; and [T2]
is the generator of H2. We also worked out the de Rham cohomology of T 2. It
was

H0(T 2) = R, H1(T 2) = R2 and H2(T 2) = R.
Let’s go into a little more detail. Recall that de Rham cohomology is obtained
from the cochain complex

0→ Ω0(T 2)
d0−→ Ω1(T 2)

d−→
1

Ω2(T 2)
d2−→ 0,

Where Ωi(X) are the differential i-forms on x and the d′s are given by the total
derivative map. The de Rham cohomology is then

Hi(T 2) =
kerdi

imdi−1
.

In the case of T 2,
H0(T 2) = R{[1]}

H1(T 2) = R{[dx], [dy]}
Note that x and y are not functions on T 2, so dx and dy are non zero in H1.
Lastly,

H2(T 2) = R{[dx ∧ dy]}.
The notation R{S} means we are taking the R span of S. Notice that there is
a relationship between homology and cohomology. We’d like the relationship to
take the form a a pairing. For example,∫

L1

dx = 1,

∫
L2

dx = 0,

∫
L1

dy = 0,

∫
L2

dy = 1.

We would like to define a map
∫

: Hi(X) × Hi(X) → R given by ([c], [ω]) 7→∫
c
ω. This is in fact what we get, but firstly we need to check that this map

is independent of choice of homology class of c and cohomology class of ω. In
both cases, this more or less follows from Stokes’ theorem.
Changing homology class: Suppose [L1] = [L′1]. Then

∫
L1
dx =

∫
L′1
dx ⇐⇒∫

∂R
dx = 0 ⇐⇒

∫
R
d(dx) = 0. We used Stokes’ theorem and the fact that

d2 = 0.
Changing cohomology class: Suppose [ω] = [ω′]. This means ω − ω′ = dθ for
some θ in Ωi−1(X). Then

∫
c
(ω − ω′) =

∫
c
dθ −

∫
∂c
θ = 0, since ∂c = ∅.

Thus we do indeed get a map∫
LHi(X)×Hi(X)→ R.

Let’s again look at the case of the torus. Let’s use real coefficients for homology
as well just so that everything lines up nicely. We have H0(T 2) = R{[p]} and
H0(T 2) = R{[1]}. Since

∫
p

1 = 1, H0(T 2) = H0(T 2)∗. Similarly, H1(T 2) =

H1(T 2)∗ and H2(T 2) = H2(T 2)∗. Moreover, the generators that we described
earlier are dual.
This always happens.
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Theorem 7.1 (de Rham’s Theorem). Hi(X) = Hi(X,R)∗.

7.2 Cup products and Poincaré duality

There is a wedge product on differential forms. The map is Ωi(X)⊗ Ωj(X)→
Ωi+j(X) given by (ω1, ω2) 7→ ω1 ∧ ω2. This induces a well product

∪ : Hi(X)⊗Hj(X)→ Hi+j(X)

given by ([ω1], [ω2]) 7→ [ω1 ∧ ω2]. This is called the cup product. We leave it to
the reader to check that this map is well defined. Cup products are one of the
reasons why cohomology is often better than homology. The cup products puts
a graded ring structure on H∗(X) = ⊕iHi(X).
Let’s again look at the cohomology of the torus. It was R,R2 and R in dimen-
sions 0, 1 and 2 respectively. Notice that the Hi = Hn−i, where n = 2 is the
dimension of T 2. This turns out to be not a coincidence and is an example of
Poincaré duality in action. We will describe it in what follows.
The cup product gives a map

∪ : Hi(X)⊗Hn−i(X)→ Hn(X)

where dimX = n. We thus get a map

Hi(X)⊗Hn−i(X)→ R

by [ω1]⊗ [ω2] 7→
∫
X
ω1 ∧ ω2.

For the torus, this induces an isomorphism Hi(T 2)→ H2−i(T@)∗ = H2−i(T
2).

This happens in general (at least for compact spaces) and is known and the
phenomenon is known as Poincaré duality..

Theorem 7.2 (Poincaré Duality). Let X be compact of dimension n. The map
Hi(X)→ Hn−i(X)∗ = Hn−i(X) is an isomorphism.

This gives us a way of interpreting Hi(X) as “{ codimension i submanifolds of
X } ”.

Example 7.3. In this example, we compute the Poincar’e dual of ω = 2[dx] +
3[dy] ∈ H1(T 2). We need to work out the corresponding map in H1(T 2)∗. We
compute what omega does to basis vectors [dx] and [dy].∫

T 2

[ω] ∪ [dx] =

∫
T 2

3dy ∧ dx = −3 =

∫
−3[L1]+2[L2]

[dx]

∫
T 2

[ω] ∪ [dy] =

∫
T 2

2dx ∧ dy = 2 =

∫
2[L2]−3[L1]

[dx]

So [ω] corresponds to the same element of H1(T 2)∗ as −3[L1]+2[L2] ∈ H1(T 2,R).
Thus the dual of 2[dx] + 3[dy] is −3[L1] + 2[L2].
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7.3 Chern classes

If X is a complex manifold and E → X is a holomorphic line bundle then we
get a divisor D which corresponds to a homology class [D] ∈ H2n−2(X), where
n = dimX. If X is compact, we can use Poincaré duality to get a cohomology
class c1(E) ∈ H2(X). This element of H2(X) is called the first chern class of
E. If E = TX the holomorphic tangent bundle, then we sometimes write c1(X)
for c1(TX).
Let’s look at an example. Let X = T 2 and consider E = TX, the holomorphic
tangent bundle. Pick a section, say s = d

dz . To get a divisor, we find the zeroes
of this section. There are none! Thus c1(E) = c1(T 2) = 0 ∈ H2(T 2). We will
see later that this means that T 2 is Calabi-Yau.
Let’s look at another example. Let X = P2 = C−{0}

C× = {[x1 : x2 : x3]}. Again
let E = TX. The cohomology of P2 is as follows.

H0 = R{[1]}
H1 = 0

H2 = R{[ω]}, ω ∈ Ω2(P2)

H3 = 0

H4 = R{[ω ∧ ω]} = R{[ω]2}

To work out the chern classes, we need to get a divisor. To do this, take the
following two “generic” sections of E = TP2:
Use coordinate charts on P2 given by

1. U = {x1 6= 0} with coordinates u1 = x2

x1
and u2 = x3

x1
.

2. V = {x2 6= 0} with coordinates v1 = x1

x2
and v2 = x3

x2
.

3. W = {x3 6= 0} with coordinates w1 = x1

x3
and w2 = x2

x3
.

The two generic sections are defined on U (and hence can be extended onto the
rest of P2) as

s1 = u1
∂

∂u1
− u2

∂

∂u2

s2 = u1
∂

∂u1
− u1

∂

∂u2
.

In V the sections are

s1 = −v1
∂

∂v1
− 2v2

∂

∂v2

s1 = −v1v2
∂

∂v1
+ (1− v2

2)
∂

∂v2
.

In W the sections are

s1 = w1
∂

∂w1
2w2

∂

∂w2
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s1 = −w1w2
∂

∂w1
+ (1− w2

2)
∂

∂w2
.

The zeroes of s1 are [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]. Thus c2(E) = 3[ω]2 ∈ H4(P2).
The first chern class is part of a family of characteristic classes (called chern
classes). The ith chern class lives in H2i(X). For the first chern class, we looked
at where two sections s1 and s2 are linearly independent i.e., when s1 ∧ s2 = 0.
The other chern classes come from generalising this notion. We will describe
this in later sections. We can package together all the chern classes into one big
total chern class, c(E) which is

c(E) = ⊕ici(E) ∈ H∗(X).

7.4 Morse Theory

Note: the approach to Morse theory in this section is by no means the usual
approach. It’s even possible that some of our claims in terms of separating the
dynamics of gradient flows into classes of separatrices may be false in dimension-
als greater than 2. Moreover, it lacks the rigour of Milnor’s classical approach
of growing your given manifold using fixed-point information. However, these
are very simple and geometric notions that give an intuitive feel for why Morse
theory should be the same as cellular (co)homology theory. Plus, it totes gives
a justification for modern combinatorial versions of Morse theory such as that
developed by Forman.

Morse theory is another way to understand (co)homology. Let Mn ⊂ RN be a
smooth compact embedded manifold in some high dimensional euclidean space.
A height function is a smooth function

H : M → R.

One should think of a surface (say a torus) turned vertically, and the height
function that tells us the height at each point of the torus.

Consider the gradient ∇H of H. It is a vector field on M that points in the
(unscaled) direction of steepest descent (or ascent depending on signs). Let’s
study the situation by drawing flow lines and consider the dynamics of these
lines. We get distinct families for different types of flow, partitioned based on
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the source of the flow line - i.e.: the limit of a flow line as t→∞. So doing gives
us a cell decomposition of our surface, using which we can do (co)homology.
Let’s partition the cells in accordance to their “origing/source” stationary point
(when ∇H = 0).

Here’s the main point:

To each maximum, we get a top dimensional cell. For each stationary point
of the form −(x2

1 + . . . + x2
µ) + x2

µ+1 + . . . + x2
n, we get a µ-dimensional cell.

Having a cell decomposition lets us do (co)homology with stationary points of
∇H. In particular, generic (i.e.: Morse-Smale systems) cell decompositions will
satisfy that the boundaries of a cell corresponding to a stationary point of the
form −(x2

1 + . . . + x2
µ) + x2

µ+1 + . . . + x2
n will have boundary consisting only

of cells corresponding to stationary point with (strictly) fewer negative terms
in its local expansion, thereby giving us a natural boundary map. To be fair,
this boundary probably still makes perfect sense for non-generic systems, it just
takes a bit more work (e.g.: you can probably show that any boundary cells cor-
responding to stationary points which don’t have strictly fewer negative terms
will cancel out).

7.5 More on Chern classes

The last time we talked about chern classes, we saw that the zeros of a generic
section of a vector bundle E → X of rank r gives cr(E). In this section we will
look at two other approaches to studying chern classes.

7.5.1 Chern classes from Grassmannians

Recall that projective space is Pn := {[x0 : . . . : xn]}. We have inclusions

Pn ⊂ Pn+1 ⊂ . . .

by [x0 : . . . : xn] 7→ [x0 : . . . : xn : 0]. We can take the direct limit (colimit) of
these maps to get

P∞ := {[x0 : x1 : . . .] | at most finitely many xi are nonzero }.
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P∞ parametrizes complex lines in C∞. It has a tautological line bundleO(−1)→
P∞ whose total space is

O(−1) := {([x0 : x1 : . . .], α(x0, x1, . . .)) | α ∈ C} ⊂ P∞ × C.

Similarly, it is possible to define a space Grk which parametrizes k-dimensional
vector subspaces of C∞. It is called the Grassmannian. There is also a tauto-
logical plane bundle Ek → Grk, where

Ek := {(V, v) ⊂ Grk × (C)k | v ∈ V }.

The point is that Ek → Grk is the universal rank k vector bundle. Given a rank
k vector bundle F → X, there is a map ϕk → Grk such that F ∼= ϕ∗(Ek). That
is, we have the following pull back diagram.

F //

��

Ek

��
X

ϕ
// Grk

Now we can define the total chern class of Ek, c(Ek) = 1 + c1(Ek) + . . . ck(Ek).
Then we can get every other chern class by

c(f) = ϕ∗c(Ek),

where ϕ∗ : H∗(Grk)→ H∗(X).
Chern classes have the following nice properties.

• ci(F ) ∈ H2i(X,Z), c0(F ) = 1, ci>k(F ) = 0.

• c(f∗F ) = f∗c(F ).

• c(F ⊕G) = c(F ) ∪ c(G).

• −c1(O(−1)) = e(O(1)) is the generator of H2(Gk), where e is the euler
class.

It turns out that these properties completely characterize chern classes. Thus,
we can forget all we know about them and just take these properties as axioms
if we like.

7.5.2 Chern classes from differential geometry

Let E be a smooth rank k complex vector bundle over M . Let Ω be something
called the curvature form of E. Then chern classes come out as the determinant

det(I +
itΩ

2π
) =

∑
m

cm(E)tm.
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To get Ω, pick any connection for the bundle E. A connection is a map

∇ : Γ(E)→ Γ(Ω1M ⊗ E).

We think of ∇ as a C-linear map between vector fields on E and vector fields
of 1-form valued vectors in E. ∇ must also satisfy the Leibnitz rule

∇(fs) = df ⊗ s+ f∇(s).

Here is a simple example.

Example 7.4. Let E be the trivial complex 3-bundle over M = C2. We expect
c(E) = 1. Let’s work this out. To specify the connection, we need coordinates
to specify a generic section. Let ∇, let α, β and γ be the sections of E →M of
the form

α : (x, y) 7→ ((x, y), (1, 0, 0))

β : (x, y) 7→ ((x, y), (0, 1, 0))

γ : (x, y) 7→ ((x, y), (0, 0, 1)).

A generic section is then of the form fαα + fββ + fγγ. Then ∇ : Γ(E) →
Γ(Ω1M ⊗ E) is given by

((x, y) 7→ ((x, y), (fα, fβ , fγ)) 7→ ((x, y) 7→ ((x, y), dfα ⊗ α+ dfβ ⊗ β + dfγ ⊗ γ).

Note that ∇(α) = ∇(β) = ∇(γ) = 0. Let’s calculate c(E) using this connections
stuff.
The first step is to pick sections for E on a patch U of C2 so that theses sections
are a C∞(M,C) basis for E on this patch U ⊂ C2. For example we can use
{α, β, γ}, {exα, eyβ, ex+2yγ} or {exα, exα+ eyβ, exα+ eyβ + ex+2yγ}.
Let’s use the middle one. We can specify all the data of ∇ using such a basis
and the Leibnitz rule. We have

∇(exα) = exdx⊗ α

∇e2yβ) = 2e2ydy ⊗ β

∇(ex+2yγ) = xx+2y(dx+ 2dy)⊗ γ.

We can write this in a matrix:

ω = [ωij ]ij =

 exdx 0 0
0 2e2ydy 0
0 0 ex+2ydx+ 2dy


Then Ω is defined to be

Ω := dω + ω ∧ ω.

dω is defined to be d of the entries. To calculate the wedge of two matrices
we simply multiply out the two matrices, but replacing multiplication of entries
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from the left and the right matrices with wedge products. In our case, one can
check that dω = 0 and ω ∧ ω = 0. Thus, Ω = 0.

det(I +
iΩt

2π
) = det(I) = 1 = c(E)

as we expected.

Here is another example.

Example 7.5. For TP1 take the metric h = dzdz
(1+|z|2)2 = dx2+dy2

(1+x2+y2)2 . If we can

show that

Ω =

[
2dz ∧ dz

(1 + |z|2)2

]
=

[
−4idx ∧ dy

(1 + x2 + y2)2

]
.

Then det(I + 4t
2π

[
dx∧dy

(1+(x2+y2))2

]
) = 1 + 2

π
dx∧dy

(1+(x2+y2))2 .

The term 4
2π

dx∧dy
(1+(x2+y2))2 is a 2-form representative of the cohomology class

c1(TP2). We need to determine if it’s nullcohomologous. Let’s compute∫
R2

2dz ∧ dz
π(1 + |z|2)2

=
2

π

∫
R2

rdr ∧ dθ
(1 + r2)2

= 2.

So it isn’t! In addition, we should note that this is the Euler characteristic of
P1 as the n-th Chern class for the tangent bundle of a complex n-dimensional
manifold is also its Euler class. Thus the Euler characteristic of the manifold
may be calculated by the pairing of cn(TM) and the fundamental class of the
manifold (basically, you think of the manifold AS a homology class) - which is
precisely integrating over the manifold.

Let’s now compute the the curvature form Ω = dω + ω ∧ ω for the Levi-Civita
connection ∇ : Γ(TP1) → Γ(Ω1P1 ⊗ TP1) over the usual coordinate patch for
C ⊂ C∪{∞} = P1. In terms of real coordinates, the Levi-Civita connection has
Christoffel symbols:

Γxxx = −Γxyy = Γyxy = Γyyx =
−2x

1 + x2 + y2
,

Γyyy = −Γyxx = Γxyx = Γxxy =
−2y

1 + x2 + y2
.

So, given that the Levi-Civita connection satisfies that ∇~ei~ej = Γkij~ek, we have
that:

∇(∂x) = (Γxxxdx+ Γxyxdy)⊗ ∂x + (Γyxxdx+ Γyyxdy)⊗ ∂y,
∇(∂y) = (Γxxydx+ Γxyydy)⊗ ∂x + (Γyxydx+ Γyyydy)⊗ ∂y.

Therefore, using the addtional facts that ∂z = 1
2 (∂x−i∂y) and that dz = dx+idy,

we see that:

∇(∂z) =
1

2
∇(∂x)− i

2
∇(∂y) =

1

1 + zz̄
[(−z̄dx− iz̄dy)⊗ ∂x + (iz̄dx− z̄dy)⊗ ∂y]

=
1

1 + zz̄
(−z̄dz ⊗ ∂x + iz̄dz ⊗ ∂y) =

−2z̄

1 + zz̄
dz ⊗ ∂z.
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In retrospect, there was probably an easier way to do that computation, but it’d
probably involve us knowing something about Hermitian metrics? Anyhoo, this
tells us that our connection form is:

ω =

[
−2z̄

1 + zz̄
dz

]
.

Since this connection form is a 1× 1-matrix, we see that ω∧ω = [0]. Hence the
curvature form is given by:

Ω = dω =

[
d
−2z̄

1 + zz̄
∧ dz

]
=

[
2dz ∧ dz̄

(1 + zz̄)2

]
,

as desired. Also note that we may obtain the Gaussian curvature of our man-
ifold with respect to this metric by feeding into Ω a pair of orthonormal vector
fields such as 1√

2
(1 + |z|2)∂z and 1√

2
(1 + |z|2)∂z̄.

Before we leave this example, consider the following question: all of these com-
putations that we’ve just done are over the patch C in P1, and should all still
apply to the restriction of the tangent bundle of P1 to C. But we know that any
vector bundle over C should be trivial and cannot have nontrivial Chern classes.
So, what’s going on?

7.5.3 The Chern character

Recall the following: Let X be a complex n-manifold, E a rank r vector bundle
over X. Let s1, . . . , sr be a generic set of r sections of E. For 1 ≤ k ≤ r, the
kth Cher class of E

ck(E) ∈ H2k(X)

is given by the Poincar’e dual to the set of points x ∈ X where

{s1(x), . . . , sr−k+1(x)}

are linearly dependent.
Here are some properties of Chern classes.

1. ck(E) depends only on the topology of E.

2. If 0 → E → F → G → 0 is an exact sequence of vector bundles over X,
then c(F ) = c(E)c(G) where c(E) = 1 + c1(E) + . . .+ cr(E) ∈ ⊕iHi(X).
In particular, if G = E ⊕ F , then c(G) = c(E)c(F ).

3. (Chern character). Suppose we can factorise c(E) = (1+x1)(1+x2) · · · (1+
xr) where xi ∈ H2(X). The xi are called Chern roots. The Chern char-
acter is

ch(E) =
∑
i=1

exi
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where xxi = 1 + xi +
x2
i

2! + . . .+ xn

n! . Then

ch(E ⊗ F ) = ch(E)ch(F )

ch(E ⊕ F ) = ch(E) + ch(F ).

Example 7.6. If X = P2 and E = TP2, we calculated that c(E) = 1+3ω+3ω2,
ω ∈ H2(P2) is the Poincaré dual to a hyperplane. We can factorise c(E) =

(1 + 3+i
√

3
2 ω)(1 + 3−i

√
3

2 ω). If we let x± = 3±i
√

3
2 ω, then the Chern character is

ch(E) = ex+ + ex− = 2 + 3ω +
3

2
ω2.

Here is a special chase of the equality ch(E⊗F ) = ch(E)ch(F ). If E and F are
line bundles, we have c(E) = 1 + c1(E). Thus

ch(E) = 1 + c1(E) +
c2(E)2

2!
+ . . . = 1 + c1(E) + . . .

Then ch(E ⊗ F ) = ch(E)ch(F ) gives

1 + c1(E ⊗ F ) + . . . = 1 + c1(E) + c1(F ) + . . .

so we have the equality

c1(E ⊗ F ) = c1(E) + c1(F ).

7.5.4 Some vector bundles on Pn

The tautological line bundle on Pn is

O(−1) = {(p, v) | p ∈ Pn, v ∈ p}.

The hyperplane bundle on Pn is H = O(1) = O(−1)∗. It has first Chern class
c1(H) = ω where ω is dual to a hyperplane. Since there is an isomorphism
O(1)⊗ )(−1)

∼−→ C = ′(0), we have

c1(C) = c1(O(1)) + c1(O(−1)).

Since c1(C) = 0, we get c1(O(−1)) = −ω.
Let’s look at the tangent bundle for Pn. We have an exact sequence

0→ C→ H⊕n+1 → TPn → 0

The map H⊕n+1 → TPn sends (s0, . . . , sn) 7→ s0
∂
∂x0

+ . . . + sn
∂
∂xn

, where
si ∈ Γ(H).
We have c(H⊕n+1) = c(C)c(TPn). From this, we get c(TPn) = (1 + ω)n+1. In
particular, ck(TPn) =

(
n+1
k

)
ωk. The top Chern class is cn(TPn) = (n + 1)ωn.

After integration, we get that the Euler characteristic is

χ(TPn) =

∫
Pn
cn = n+ 1

40



7.5.5 Adjunction Formulas

We don’t really know why this section was called “adjunction formulas”.
Let X be a smooth hypersurface in Pn defined by a homogeneous degree d
polynomial

P (x0, . . . , xn) = 0.

Here’s a fun fact: The normal bundle to X in Pn is NX := TPn/TX ∼= O(d)|X .
Here O(d) := O(1)⊗d and |X means we are restricting to the hypersurface
X ⊂ Pn. There is an exact sequence

0→ TX → TPn|X → O(d)|X → 0.

Again, using the properties of chern classes, we have c(TPn|X) = c(TX)c(O(d)|X),
so (1 + ω)n+1 = c(TX)(1 + d.ω). Here the d is not the total derivative, but is
instead just the degree d of the polynomial. So we have

c(TX) =
(1 + ω)n+1

1 + d.w
= (1 + ω)n+1(1− d.ω + d2ω2 − . . .)

.

Example 7.7. If X is a degree d curve in P2 then

c(TX) =
(1 + ω)3

1 + d.ω
= (1 + 3ω + 3ω2)(1− d.ω + d2ω2) = 1 + (3− d)ω.

So c1(TX) = (3− d), which gives us that the Euler characteristic is

χ(X) =

∫
X

c1(X) =

∫
(3− d)ω = (3− d)

∫
P2

d.ω2

Since χ(X) = 2 − 2g, where g is the genus of the curve X, we get the formula
(after rearranging)

g =
(d− 1)(d− 2)

2
.

This is quite a nice relationship between the genus of a curve and the degree of
the polynomial defining it.

Example 7.8. This will be an important example for us. It is the quintic
hypersurface in P4. Let X be a degree 5 hypersurface in P4. Then

c(X) =
(1 + ω)5

1 + 5ω
= 1 + 10ω2 − 40ω3.

NB: c1(X) = 0 so X is Calabi-Yau. The Euler characteristic is χ(X) =∫
X
−40ω3 =

∫
P4(5ω)(−40ω3) = −200.
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8 Classical Mechanics

(P) We now switch gears into the world of Physics. A dynamical system consists
of 2 parts.

1. A phase space manifold M . We think of this as the space of all states that
the system can be in.

2. A Lagrangian L : M → R.

Example 8.1 (A free particle). This system consists of the following.

• Phase space: R6 = {(x, y, z, ẋ, ẏ, ż)}.

• L = 1
2m(ẋ2 + ẋ2 + ż2).

The time evolution is determined as follows.

Definition 8.2 (Action). Given a trajectory qi : [t0, t2] → M , we define the
action of q to be

s[q] =

∫ t1

t0

dtL(qi).

The true path of the system is the trajectory for which

δs

δq
|q=qtrue = 0.

This gives the Euler-Lagrange equations

∂L
∂qi

+
d

dt
(
∂L
∂q̇i

) = 0.

8.1 Classical Field Theory

So we (some) begin with a “space-time” manifold. The simplest realistic ex-
ample in Minkowski space: M4. The coordinates are (t, x, y, z). It is pseudo-
Riemannian. The space is R4 with metric g = diag(−1, 1 . . . , 1) where diag is
the diagonal matrix with entries −1 in the top left, and 1 in the other diagonal
positions.
We turn M4 into a fibre bundle (add fibres to it, so we are talking about fibre
bundles over M4). Fields are sections of the fibre bundle. The phase space is
the set of all sections.
Some examples include:

• line bundles: temperateure.

• vector bundles: electric field.

• tensor bundles: gravitational field.
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For fields, we define a Lagrangian density

L : {Γ(E →M4)} → C∞(M4,R)

The action of a field F is

S[F ] =

∫
Ω⊂M4

L[F ]dx ∧ dy ∧ dz ∧ dt

We minimise the action over the subspace over all sections F in Γ(E) with some
specified boundary conditions denoted by F (∂Ω).

Example 8.3 (Electromagnetic field in a vacuum). Consider M4 which is our
spacetime manifold.

L[a] = −1

4
FµνF

µν = −1

4

3∑
µ=0

3∑
ν=0

FµνF
µν ,

where Fµν = ∂µAν − ∂νAµ, Fµν = qµαqβνFαβ and A = A0, A1, A2, A3. The
metric is the one we saw earlier, g = diag(−1, 1, 1, 1).

So the Lagrangian density is a map L : Γ(E) → Ωn(M) where E is a fibre
bundle over M and dim(M) = n. The action of the field configuration is

S[F ] =

∫
L(F ).

Here the field F is a smooth section of E.

Example 8.4 (Einstein-Hilbert action). The field is the metric tensor over R4,
known as the Loretzian signature. The action for g is

S[g] =

∫
d4xR(

√
−g)

where R is the Ricci scalar and g = det(metric).

8.2 Non-relativistic quantum mechanics

The basic structures we will look at are as follows. There is a Hilbert space H
over C, the elements of which are called kets. We write

H = {|α〉}.

We think of these as preparation states of our system.
The initial state of our system is an equivalence class of kets, under the equiv-
alence relation

|α〉 ∼ |β〉 ⇐⇒ |α〉 = λ|β〉

for λ ∈ C \ {0}.
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The dual space H∗ has elements written as 〈α|, and they are called bras. We
think of these as measurement outcomes. We subject bras to the same equiva-
lence relation of multiplication by a nonzero scalar. does H∗ have

this relation
or is this for
something else
later?

The next element of quantum mechanics gives us time evolution. It is a unitary
operator Û(t; t0) and is generated by a Hermitian operator called the Hamilto-
nian as

Û(t; t0) = exp(−iĤ(t− t0))

where exp(Â) = 1+ Â+ 1
2! Â

2 + · · · .
The “probability amplitude” associated to a process is

〈α | U(t; t0) | β〉 = 〈α | e−i(t−t0)Ĥ | β〉.

The probability associated to this input/outcome combination is

Pr(β → α) =
|〈α | e−i(t−t0)Ĥ | β〉|2

|〈α | α〉||〈β | β〉|

Example 8.5 (Sterm-Gerlach experiment).

Imagine an oven if silver atoms inside it bouncing around. Imagine shooting
these atoms through a hole in the oven through a non uniform magnetic field

and seeing which ones are spin up ↑=
(

1
0

)
or spin down ↓=

(
0
1

)
(having

specified a z-axis).
Now send the spin up beam through a second Sterm Gerlach apparatus oriented
in the x-direction. This again splits into two beams 〈+| and 〈−|. We represent
these as

〈= (1/
√

2, 1/
√

2), 〈−| = (1/
√

2,−1/
√

2)

Then

Pr(↑→ +) = |〈+ | ↑〉|2 = |(1/
√

2, 1/
√

2)

(
1
0

)
|2 = 1/2
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8.3 Path Integrals

The raison d’être of quantum physicists is to find the value of 〈α | e−i∆tĤ | β〉.
For a point particle, we have a Hilbert space of kets H = span(|q〉) where q ∈ R
(i.e., q indexes space). We want to evaluate

〈qf | eiHT | qI〉

where 〈qf | is some fixed position and |qI〉 is some fixed initial position. Here,
we’ve replaced ∆t with T .
To go about computing this, we divide T into N pieces δt = T/N and write

〈qF | e−iδtHe−iδtH . . . e−iδtH | qI〉.

The basis {|q〉} is othonormal in the following sense:

〈q | q′〉 = δ(q − q′)

Where δ is the Dirac delta function. We can represent momentum states as
{|p〉}. These also form a basis for H and satisfy:

• 〈p | p′〉 = δ(p− p′).

• 〈p | q〉 = e−ipq.

Switching from p to q is equivalent to a Fourier transform.
The Hamiltonian for a free particle is:

Ĥ =
1

2
p̂2,

where p̂ is an operator which satisfies p̂|p〉 = p|p〉.
Since {|q〉} forms a basis for H, we can write∫

dq|q〉〈q| = 1.

Thus we can write our probability amplitude as

〈qf | e−iδtH(

∫
dqN−1|qN−1〉〈qN−1|) · · · e−iδtH(

∫
dqN−1|qN−1〉〈qN−1|) | qI〉

= (

N−1∏
j=1

∫
dqj)〈qF | e−iδtH | qN−1〉 · · · 〈q1 | e−iδtH | qI〉

Now we pull the same trick that
∫
dp
2π |p〉〈p| = 1 to get

〈qj+1 | e−iδtH | qj〉 =

∫
dp

2π
〈qj+1 | e−iδtH | p〉〈p | qj〉

=

∫
dp

2π
e−iδt

1
2p

2

eip(qj+1−qj)

=

(
−i
πδt

) 1
2

exp(
i

2

(qj+1 − qj)2

δt
)
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So all together we get

〈qf | eiHT | qI〉 =

(
−i

2πδt

)N
2

((

N−1∏
k=1

∫
dqk) exp

i δt
2

N−1∑
j=0

(
qj+1 − qj

δt

)2


Letting δt → 0, we have
(
qj+1−qj

δt

)2

→ q̇2 and δt
∑N−1
j=0 →

∫ T
o
dt. So we get

〈qf | eiHT | qI〉 =

∫
D[q] exp(i

∫ T

0

dt
1

2
q̇2)

where
∫
D[q] = limN→∞

(
−i
πδt

)2

(
∏N−1
k=1

∫
dqk). But

∫ T

0

dt
1

2
q̇2

is nothing other than the classical action for a point particle. In general,∫
D[q] exp(iδ[q]) defines the “quantized” version of the classical system defined

by the action S.

8.3.1 Wick Rotation

Take once more the action for a point particle

S[q] =

∫ T

0

dt[
1

2
(q̇)2 − V (q)].

Suppose the integrand admits an analytic continuation to C, i.e., we let t in q(t)
take complex values. The integral is now over a contour in C. Via a change of
variables we get

i ∈T0 dt[
1

2
(q̇)2 − V (q)] = −

∫ T

0

d(−it)[1
2

(
d(−it)
dt

dq

d(−it)

)2

− V (q)]

= −
∫ −iT

0

dτ [
1

2

(
dq

dτ

)2

+ V (q)]

The result,
∫
dτ [ 1

2

(
dq
dt

)2

+V (q)] is called the Euclidean Action. It is called that

because when t 7→ −it then −dt2 + dx2 7→ dt2 + dx2.
Anyway, this means we are now studying

Z =

∫
D[X]e−SE [X]

which is called the partition function. From now on, we will be given the
Euclidean action and this will be our starting point.
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Recall that a classical field consists of a fibre bundle and an action S : Γ(E)→ R.
A quantum field theory consists of evaluating∫

D[X]e−SE [X]

over the space Γ(E) subject to boundary conditions.

9 Classifying spaces and equivariant cohomol-
ogy

The goal of this section is to learn to compute cohomology - especially when
our spaces of a group acting on them.
Here’s the idea. Let X be a space with an action of a group G. We will be
defining the G-equivariant cohomology of X, which we will denote by appending
a subscript G to our normal notation for cohomology: H∗G(X). In our heads,
we should think think

H∗G(X)“ = ”H∗(X/G),

the cohomology of the quotient space. This is NOT the definition because if G
doesn’t act freely on X, then the quotient won’t be very nice. For example, if X
were a manifold, then we could get orbifold points in X/G, so it will be hard to
get statements like Poincaé duality. Basically, this definition would only work
if G acted freely. So what should we do?
Here is the solution: we will replace X with a (weakly) homotopy equivalent
space Y on which G does act freely. We can then define H∗G(X) := H∗(Y/G).
The question now becomes: how can we find such a Y ? The answer comes from
the theory of classifying spaces.

Definition 9.1. Let G be a group. The classifying space of G, denoted BG is
the base space of the universal principal G-bundle

In our heads, we should think of a G-bundle like a vector bundle, where the
fibres are G. The “universal” part of the definition means that BG satisfies the
following universal property. Denote the universal bundle by π : EG→ BG. If
p : E → B is a principal G-bundle, then there exists a map f : B → BG such
that

(p,E) ' (f∗π,EG).

i.e., we have the following diagram.

E //

p

��

EG

π

��
B

f
// BG

From this, we get that there is a correspondence between principal G-bundles
over X and homotopy classes of maps from X → BG.
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9.1 Real life

In real life, if we can find a weakly contractible 10 space EG with a free G
action, then we can set BG = EG/G. This will give us a universal principal G
bundle EG→ BG where the map is the quotient map. This is one way to find
classifying spaces.

Example 9.2. BZ. Z acts freely on R via translations and R is contractible.
Thus BZ = R/Z = S1.

Example 9.3. What about B(Z/2Z)? Well Z/2Z acts freely on the n-sphere
Sn by x 7→ −x. Unfortunately πnS

n = Z 6= 0, so Sn is not weakly contractible.
However, that is fine because we have S∞! S∞ is weakly contractible11 and
Z/2Z acts freely upon it (again via x 7→ −x). The upshot is: we can take
EZ/2Z = S∞ so that BZ/2Z = RP∞.

A similar method shows that ES1 = S∞ and BS1 = CP∞. Work it out! (Hint:
S1 is homotopic to C×)

9.2 Equivariant cohomology

Example 9.4. For X a single point, and G any group. From our initial phi-
losophy, we should have

H∗G(X) = H ∗ (EG/G) = H(BG).

This will indeed be true! Actually, for those that know about this stuff, it is
also the case that H∗G(X) = H∗(G), the group cohomology of X (we haven’t
really defined what this is yet, but the take home message is that in this case
equivariant cohomology should really only know about the group itself). For
others, the group cohomology H∗(G) is defined to be H∗(BG) (at least with Z
coefficients) so this is either mildly interesting or tautological depending on your
background.

So for example, based on our previous work,

H∗S1(pt) = H∗CP∞ = Q[t]

is a polynomial algebra. More generally, for G = T a torus (here we mean C×)n,
then we can use the Kunneth theorem to show that

H∗T(pt) = Q[t]⊗n = Q[t1, . . . , tn].

Anyway, here’s the definition.

10A space is X “weakly contractible” if πn(X) = 0 for all n
11One way to see that S∞ is contractible is to embed it in L2[0, 1] (a countable dimensional

Hilbert space) as the elements of norm 1 ie. as functions f : [0, 1] → R with
∫
[ 0, 1]f2 = 1.

Given f ∈ S∞ ⊂ L2 , we can define a family of functions ft, 0 ≤ t ≤ by setting ft(x) = f(x/t)
(ie. f but faster for x ≤ t and ft(x) = 1 thereafter. Letting t tend to zero we get an explicit
deformation retract of S∞ to the constant function with value 1.

48



Definition 9.5. H∗G(M) := H∗(M ×G EG) where M ×G EG is the quotient of
the cartesian product M ×EG by the equivalence relation (m, ge) ∼ (mg, e) for
all g ∈ G together with the G-action. 12

I guess at this point you should check that this definition works and the right
hand side has a free G-action (before quotienting) and stuff like that. Check it!
Remark: The map M → pt is G-equivariant and induces a map H∗G(pt) →
H∗G(M). This means that H∗G(M) is a H∗G(pt) module.
Facts:

1. If G acts trivially on M , then H∗G(M) = H∗G(pt)⊗H∗(M,Q).

2. If G acts freely, then M/G is already nice and H∗G(M) = H∗(M/G).

Okay, here’s a theorem to help us eventually compute some cohomology:

Theorem 9.6. Let G be a torus, ((C×)m). Let F = MG be the G fixed points.
Then, at least up to torsion, we have

H∗G(M) = H∗(F )[t1, . . . , tm].

By “up to torsion”, we mean that this becomes true after tensoring with Q(t1, . . . , tn)
ie we allow rational functions and not simply polynomials.

9.2.1 De Rham model

We are going to build a De Rham-ish way to think of equivariant cohomology
for circle actions.
Let G = S1 act on M . Let X be a vector field generating the action. This
is okay since S1 acts by a 1 parameter family of diffeomorphisms, which gives
us flows. Let i(x) be the “interior derivative” with respect to X. What is the
interior derivative? Well for ω ∈ Ωk+1

i(X)(ω(Y1, . . . , Yk) = ω(X,Y1, . . . Yk).

So i(X) : Ω∗ → Ω∗−1.
Define

dX = d+ ui(X)

where d is the exterior derivative and u is a parameter with formal degree 2 i.e.,
u is an indeterminate element of Ω2. We’d like this new dX to be a differential,
but d2

X 6= 0 in general.

12Dougal: I think this is what the “G-fibred product” notation ×G means. In TriThang’s
original version of the notes, he thought it meant the subset of M × G consisting of pairs
(m, e) satisfying (m, ge) = (mg, e) for all g ∈ G. But that seems weird, since it would just
give MG × EGG. We also quotiented by a G-action g(m, e) = (mg, e) = (m, ge) before
taking cohomology. But this isn’t actually a group action for non-abelian groups, and that’s
not what’s in the book anyway. We wanted to quotient because we should have H∗G(M) =
H∗(M/G) for G acting trivially on M , but I think this is achieved anyway by the quotient in
the definition of M ×G EG.
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However, if we restrict to the subcomplex Ω∗X ⊂ ΩX where diX + ixd = 0
(the operator on the left is sometimes called the Lie derivative), then dX is a
differential on this subcomplex.
Moral: (Ω∗X , dX) is a chain complex and H∗S1(M) = kerdX/imdX . Magic!
Maybe (really maybe) we will say how this works next time.

9.3 Atiyah-Bott localisation

We will state the theorem, then explain what it means after which we will give
some examples.

Theorem 9.7 (Atiyah-Bott localisation). Let M be a compact manifold with a
T = (C×)n action. If ϕ ∈ H∗T (M), then

ϕ =
∑
F

i∗i
∗ϕ

e(Nf/M )

where the sum is over connected componentts F of the fixed locus MT and
i : F ↪→M is its inclusion into M .

9.3.1 Explaining the theorem

What are the i things?

i∗ : H∗T (M)→ H∗T (F )

is the usual pullback of equivariant cohomology that one expects. To define the
pushforward

i∗ : H∗T (F )→ H∗T (M)

we need to use Poincaré duality. It is defined as the sequence of maps

Hp
T (F )

∼−→ HdimF−p
T (F )∧

(i∗)∧−−−→ HdimF−P
M (M)∧

H−→
dimM−dimF+p

T (M).

One might ask if this is right since we haven’t said that Poincaré duality holds
for equivariant cohomology. This is something to check, but is part of the reason
why we introduced the funny definition of equivariant cohomology i.e., to make
nice properties like Poincaré duality work.
What is e(NF/M )?
In the Mirror Symmetry book we have been following [1], the notation does
not have the underline as we do. But we think that this is just notational
convention to not have the underline and that to understand it, it really should.
Without the underline, e(NF/M ) is the equivariant Euler class of the normal
bundle NF/M to F in M . With the underline, e(NF/M ) is the class in H∗T (M)
with i∗e(NF/M ) = e(NF/M ). It turns out that e(NF/M ) = i∗1.
In particular i∗i∗1 = e(NF/M . Reason: 1 is Poincaré dual to the homology class
of F in F . i∗1 is dual to the homology class of F in M . i∗i∗ is the intersection
of F with some generic representative of its homology class. NF/M looks like a
neighbourhood of F .
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YI TO DRAW A SECTIONY PICTURE AND ADD SOME WORDS IF
NECESSARY

Why are we allowed to divide?
H∗T (M) is an algebra over H∗T (pt) = Q[t1, . . . , tn], ti ∈ H2

T (pt). The hard part
of the theorem is that once we localise the ring H∗T (M), i.e., replace it with

H∗T (M)⊗H∗T (pt) Q(t1, . . . , tn)

we can divide by e(NF/m).
Interpretation There is a projection map.

πM : M → {pt}

From this, we get an induced map

πM∗ : H∗T (M)→ H∗−dimM
T (pt) ∼= Q(t1, . . . tn)

For top dimensional classes, this is integration of differential forms. Applying
the localisation theorem to πM∗ we get∫

M

ϕ =
∑
F

∫
F

i∗ϕ

e(NF/M )

9.3.2 Examples

Corollary 9.8. Suppose T acts on M with exactly m fixed points. Then χ(M) =
m.

Proof.

χ(M) =

∫
M

e(TM)

=
∑
F

∫
F

i∗e(TM)

e(NF/m)

=
∑
F

∫
F

i∗(e(TM))

e(i∗TM)

=
∑
F

1

= m

Example 9.9. Pm−1 = {[X0 : X1 : · · · : Xm−1]}. (C×)m−1 acts on Pm−1 by

λ1, . . . , λm−1.[X0 : X1 : · · · : Xm−1] = [X0, λ1X1 : · · · : λm−1Xm−1]

The fixed points are {[1 : 0 : · · · 0], [0 : 1 : · · · : 0], . . . , [0 : 0 : · · · : 1]}. There are
M of them so χ(Pm−1) = m.
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9.3.3 Application to calculating Gromov-Witten invariants of Calabi-
Yau 3-folds

Quantum cohomology has ordinary cohomology plus other “numbers” which
are called Gromov-Witten invariants. We can think of these numbers as Taylor
coefficients to a Taylor expansion in some parameter q.
There is something called the Sigma model of string theory. The idea is that we
want to count holomorphic maps from Riemann surface (or algebraic curves /
complex 1-folds) to a fixed target manifold X. Often X is a Calabi-Yau 3-fold.

[YI DRAW]

Gromov Witten invariants are some of these counts.
To do this rigorously, we come up with a moduli space of maps from Riemann
surfaces to X denoted by

Mg,n(X,β).

The g stands for the genus of the domain curve, n the number of marked points
and β ∈ H2(X) is the homology class of the image. We can break the mod-
uli space into these bits because they are disconnected components of M(X).
Unfortunately, this moduli space is not compact. Happily, there is a way to
compactify it, and we denote its compactification by Mg,n(X,β). Basically,
this allows our domain to curves to have nodal singularities which are limits of
non-nodal curves.
If X is a quintic hypersurface in P4, then X is a Calabi-Yau 3-fold. This means
that c1(TX) = 0. We also have an inclusion

Mg,n(X,β) ⊂Mg,n(P4, β′).

We want to count maps to P4 that end up in X. X is the zero set of a degree
5 polynomial. We saw earlier (in the section about sections) that degree 5
polynomials correspond to sections of O(5). So X is the zero set of a section
of O(5). O(5) gives us a vector bundle on Mg,n(P4, β′) with the fibre over a
“point” f : C → P4 of Mg,n being the space of global sections of f∗(O(5)). s
induces a global section s̃ of E. The zero set of s̃ is the set of maps with image
in X. So to count maps to X, we can compute the Euler class of E. It turns
out that for X and Calabi-Yau 3-fold, the dimension

dimMg,n(X,β) = 0.

So we can count it by integrating the Euler class of E :∫
Mg,0(P4,β′)

e(E).

In particular, localisation is useful for computing stuff like this!
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10 Complex manifolds

Here are some examples of complex manifolds to keep in mind: C,C×,Cn,Cn/∧n =
Tn,Pn, Grn(Cm+n).
Complex manifolds are spaces that look locally like Cn with holomorphic tran-
sistion functions. Holomorphic can mean one of three things.

1. Exapandable in power series.

2. Satisfy Cauchy-Riemann equations + square integrable.

3. Complex differentiable in each variable.

Here is the motivating question. Given a complex manifold of dimension n, we
get a real manifold of dimension 2n. When can we go back the other way?
Given a complex manifold M , it has a tangent bundle TM where everything
can be written in terms of complex coordinates. We can multiply by i on each
tangent space. In a sense, i determines a notion of angle on M since it tells us
how to rotate by π/2. This is the key idea that we will be focusing on.

Definition 10.1. Let M be a real manifold M (we probably want of even di-
mension). M is almost complex if there is a smoothly varying map

J : TM → TM

such that J2 = −1 on tangent vectors. i.e., for p ∈ M , the map Jp : TpM →
TpM is represented by a matrix whose square is −I.

Coming back to the motivating question. Let M be a real manifold of even
dimension equipped with an almost complex structure

J : TM → TM.

Theorem 10.2 (Newlander-Ninenberg). If

[JX, JY ]− J [JX, Y ]− J [X, JY ]− [X,Y ] = 0

for all vector fields X and Y then M can be made uniquely into a complex
manifold where J : TM → TM corresponds to multiplication by i.

11 Sheaf cohomology

11.1 Čech cohomology

Let M be a manifold. Recall that a presheaf F of abelian groups on M assigns
to every open set U ⊆M an abelian group F(U) and to every inclusion U ⊆ V
an abelian group homomorphism F(V )→ F(U). We call the elements of F(U)
sections of F over U . The maps F(V ) → F(U) restriction maps, and the
notation s|U is often used for the image of s ∈ F(V ) in F(U). We say that F
is a sheaf if F also satisfies the following gluing condition.
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Definition 11.1 (Gluing condition). Let U ⊆M be open, let {Ui}i∈I be a cover
of U by open sets Ui ⊆ U , and let (si)i∈I be a family of sections si ∈ F(Ui)
such that for all i, j ∈ I,

si|Ui∩Uj = sj |Ui∩Uj .

Then there exists a unique section s ∈ F(U) such that s|Ui = si for all i ∈ I.

Example 11.2 (Constant sheaves). Let A be any abelian group. The constant
A-sheaf on M is the sheaf A defined by

A(U) = {s : U → A | s is locally constant.}

Example 11.3 (Sheaf of sections). Let π : F → M be a vector bundle on M .
Define

F(U) = {s : U → F |π ◦ s = idU}

Then F is a sheaf of abelian groups on M , called the sheaf of sections of F .

It turns out that a very useful way to study sheaves is to study something called
sheaf cohomology. For manifolds, sheaf cohomology is the same as Čech coho-
mology, which is defined as follows. Let M be a manifold, F a sheaf of abelian
groups on M . Let {Ui}i∈I be an open cover of M such that the intersection of
finitely many of the Ui is either empty or contractible to a point. Such a cover
is called a “good cover”. For all p ∈ Z≥0, define

Cp =

{
σ = (σi0,i1,··· ,ip)i0,i1,··· ,ip∈I

∣∣∣∣ σi0,··· ,ip ∈ F(Ui0 ∩ · · · ∩ Uip)
σi0,··· ,ip is antisymmetric in i0, i1, . . . , ip

}
.

Define dp : Cp → Cp+1 by

(dpσ)i0,··· ,ip+1
=

p+1∑
j=0

(−1)jσi0,··· ,îj ,··· ,ip+1

for all σ ∈ Cp. On the right hand side, all terms are restricted to the set
F(Ui0 ∩ · · · ∩ Uip+1

) so that the sum makes sense. The Čech complex is

0
d−1

−−→ C0 d0−→ C1 d1−→ C2 d2−→ · · ·

where d−1 is defined to be the zero map. An easy check shows that dp◦dp−1 = 0
for all p ∈ Z≥0, so we can define

Hp(M,F) =
ker dp

im dp−1

called the Čech (or sheaf) cohomology of F . It turns out that this is independent
of the choice of good cover {Ui}.
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Example 11.4. Let M be any manifold, F any sheaf of abelian groups on M .
Then it follows from the gluing condition for F that

H0(M,F) =
ker d0

im d−1

= ker d0

= {σ = (σi)i∈I | dσ = 0}
= {σ = (σi)i∈I |σj |Ui∩Uj − σi|Ui∩Uj = 0 for all i, j ∈ I}
= {σ = (σi)i∈I |There exists s ∈ F(M) such that σi = s|Ui for all i ∈ I}
= F(M)

Example 11.5. The Čech cohomology of the constant Z-sheaf on M is the same
as the singular cohomology of M , i.e.

Hp(M,Z) = Hp(M,Z)

In particular, for M = CP1 = S2, we have13

H0(M,Z) = Z; H1(M,Z) = 0; H2(M,Z) = Z

11.2 Čech-de Rham isomorphism

Theorem 11.6 (Čech-de Rham isomorphism). Let M be a smooth manifold.
Then for all p ∈ Z≥0,

Hp(M,R) = Hp
dR(M)

where Hp
dR(M) is the de Rham cohomology of M .

The aim of this section is to understand enough of the proof of the Čech-de
Rham isomorphism so that we can generalise it to sheaves other than R. The
first ingredient is the idea of an acyclic resolution.

Definition 11.7 (Acyclic resolution). A sheaf A on a manifold M is called
acyclic if for every p > 0, we have Hp(M,A) = 0. If F is any sheaf of abelian
groups on M , an acyclic resolution of F is a complex of sheaves of abelian
groups on M

0
d−1

−−→ A0 d0−→ A1 d1−→ A2 d2−→ · · ·

such that there is an exact sequence of sheaves of abelian groups

0→ F → A0 d0−→ A1 d1−→ A2 d2−→ · · ·

Note that for sheaves, “exact sequence” means that everything in the kernel of
an arrow is locally in the image of the preceding arrow. Acyclic resolutions are
nice because we can use them to compute Čech cohomology.

13Dougal: I did some of these calculations on the board. There is a very small chance that
I will fill in the details later.
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Theorem 11.8. Let F be a sheaf of abelian groups on M and let

0
d−1

−−→ A0 d0−→ A1 d1−→ A2 d2−→ · · ·

be an acyclic resolution for F . Then for all p ≥ 0,

Hp(M,F) =
ker dp(M)

im dp−1(M)

where dp(M) : Ap(M)→ Ap+1(M) is the map on global sections induced by dp.

Proof. Play around with long exact sequences of cohomology and use the fact
that Hp(M,Aq) = 0 for p > 0, and that H0(M,G) = G(M) for all sheaves G. I
may fill this in later.

To use this theorem, we need to know some acyclic sheaves. Fortunately, there
are lots of them.

Proposition 11.9. Let A be a fine sheaf (i.e. a sheaf with “partitions of
unity”). Then A is acyclic. In particular, the sheaf of smooth sections of any
vector bundle on M is acyclic.

Let Ωp denote the sheaf of smooth sections of the (real) vector bundle
∧p

T ∗M .
Recall that Ω0 = OsmM is the sheaf of smooth functions on M . By Proposition
11.9, Ωp is an acyclic sheaf for each p ≥ 0. Consider the complex of sheaves on
M

0→ R→ OsmM = Ω0 → Ω1 → Ω2 → · · · (3)

Lemma 11.10 (Poincaré lemma). The complex (3) is an exact sequence of
sheaves.

Thus,

0
d−1

−−→ Ω0 d0−→ Ω1 d1−→ Ω2 d2−→ · · ·
is an acyclic resolution of R, so by Theorem 11.8,

Hp(M,R) =
ker dp(M)

im dp−1(M)
=: Hp

dR(M).

11.3 Cohomology of holomorphic vector bundles

Let M be a complex manifold. Our aim is to come up with de Rham models
for the cohomology of arbitrary holomorphic vector bundles on M . We’ll start
with the simplest example: the trivial line bundle on M . Its sheaf of sections
is just the sheaf OholM of holomorphic functions on M . Recall that a smooth,
complex-valued function f is holomorphic if and only if ∂̄f = 0.14 So we have
an exact sequence of sheaves

0→ OholM → OsmM = Ω0,0 ∂̄−→ Ω0,1

14This is just the Cauchy-Riemann equations written in a fancy way.
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where OsmM is the sheaf of smooth, complex-valued functions on M and Ωp,q =∧p
T ∗M ⊗

∧q
T̄ ∗M is the sheaf of smooth (p, q)-forms. To extend this, we use

the following lemma.

Lemma 11.11 (∂̄-Poinaré lemma). The complex of sheaves on M

0→ OholM → Ω0,0 ∂̄0,0

−−→ Ω0,1 ∂̄0,1

−−→ Ω0,2 ∂̄0,2

−−→ · · ·

is exact.

Therefore,

0
∂̄0,−1

−−−→ Ω0,0 ∂̄0,0

−−→ Ω0,1 ∂̄0,1

−−→ Ω0,2 ∂̄0,2

−−→ · · ·

is an acyclic resolution of OholM . So we can apply Theorem 11.8 again to get

Hq(M,OholM ) =
ker ∂̄

0,q
(M)

im ∂̄
0,q−1

(M)

More generally, let F be any holomorphic vector bundle on M , and let F be its
sheaf of holomorphic sections. Then we get an exact sequence of sheaves on M

0→ F → F⊗OholM
OsmM = F⊗OholM

Ω0,0 ∂̄0,0

−−→ F⊗OholM
Ω0,1 ∂̄0,1

−−→ F⊗OholM
Ω0,2 ∂̄0,2

−−→ · · ·

Note that the maps here make sense since ∂̄ is OholM -linear. Exactness follows
from the ∂̄-Poincaré lemma since F is “locally free”. The sheaf F ⊗OholM

Ω0,q

is just the sheaf of smooth sections of the vector bundle F ⊗
∧q

T̄ ∗M , and is
therefore acyclic. So

0→ F ⊗OholM
Ω0,0 ∂̄0,0

−−→ F ⊗OholM
Ω0,1 ∂̄0,1

−−→ F ⊗OholM
Ω0,2 ∂̄0,2

−−→ · · ·

is an acyclic resolution for F , so we can use it to compute Hq(M,F). In
particular, if we set F =

∧p
T ∗M , we get the following result.

Theorem 11.12 (Čech-Dolbeault isomorphism). Let
∧p

T ∗M denote the sheaf
of holomorphic (p, 0)-forms. Then

Hq
(
M,
∧

pT ∗M
)

=
ker ∂̄

p,q

im ∂̄
p,q−1 =: Hp,q(M)

12 Hodge diamonds

We want to compute the “Hodge numbers” hp,q = dimHp,q(M) for Calabi-Yau
3-folds M . We’ll start by studying some properties.
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12.1 Serre duality

One very deep relationship between sheaf cohomology groups is the following.
Let M be a compact complex manifold of complex dimension n, let F be a
vector bundle on M and let F be its sheaf of holomorphic sections. Denote by
KM the sheaf of holomorphic sections of the canonical bundle of M . Then

Hp(M,F) = (Hn−p(M,F∗ ⊗KM ))∗

In particular, if M is Calabi-Yau, then KM = OM , so for F = OM , this gives

H0,q(M) = Hq(M,OM ) = (Hn−q(M,OM ))∗ = (H0,n−q(M))∗

and hence
h0,q = h0,n−q (4)

12.2 Hodge theory

In Hodge theory, we try to understand the Dolbeault cohomology groupsHp,q(M)
of a compact complex manifold M by choosing a canonical representative for
each cohomology class. We do this as follows.
Fix a Hermitian metric h on M . There is a natural way, depending only on the
choice of h, to construct Laplacians

∆d : Ωr(M)→ Ωr(M); ∆∂ : Ωp,q(M)→ Ωp,q(M); ∆∂̄ : Ωp,q(M)→ Ωp,q(M).

A differential form ω is called ∂̄-harmonic (respectively d-harmonic) if ∆∂̄(ω) = 0
(respectively ∆d(ω) = 0. Let Hp,q

∂̄
(M) denote the set of ∂̄-harmonic (p, q)-forms

on M , and let Hrd(M) denote the set of d-harmonic r-forms on M . Then

Theorem 12.1 (Hodge Theorem). The maps

Hp,q
∂̄

(M)→ Hp,q(M)

ω 7→ [ω]∂̄

and

Hrd(M)→ Hr(M)

ω 7→ [ω]d

are isomorphism of vector spaces. Here we can take Hr(M) and Hrd(M) to be
given in terms of either real or complex-valued differential forms.

If our metric g is Kähler, we in fact have ∆d = 2∆∂̄ = 2∆∂ , so in particular, ω
is ∂̄-harmonic if and only if ω is d-harmonic. So we have

Hrd(M) =
⊕
p+q=r

Hp,q
∂̄

(M)
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which gives via the Hodge Theorem a decomposition

Hr(M) =
⊕
p+q=r

Hp,q(M).

Note that this Hodge decomposition depends on the choice of Kähler metric h!
The Hodge decomposition gives us the relation

br =
∑
p+q=r

hp,q (5)

where br = dimHr(M) is the rth Betti number of M .
We can also use Hodge theory to construct a complex conjugation mapHp,q(M)→
Hq,p(M). Notice that we always have a complex conjugation map Ωp,q(M) →
Ωq,p(M). Since ∆d : Ωr(M)→ Ωr(M) is a real operator, i.e. it comes from an
R-linear map ΩrR(M) → ΩrR(M) on real r-forms, we have ∆d(ω̄) = ∆d(ω). In
particular, ω̄ is d-harmonic if and only if ω is, so for h Kähler, we get a conjugate
linear isomorphism

Hp,q
∂̄

(M)→ Hq,p
∂̄

(M)

and hence a conjugate linear isomorphism

Hp,q(M)→ Hq,p(M).

In particular,
hp,q = hq,p. (6)

12.3 Hodge star

A Hermitian metric h on M induces a Hermitian inner product on the fibres
of ∧rT ∗M as follows. If {v1, v2, . . . , v2n} is an orthonormal basis for TxM , and
{θ1, θ2, . . . , θn} is the dual basis for T ∗xM , then {θi1 ∧ θi2 ∧ · · · ∧ θir | i1 < i2 <
· · · < ir} is an orthonormal basis for ∧rT ∗xM . Let ω be (1, 1)-form associated
to h. The Hodge star operator is defined to be the conjugate-linear map

∗ : Ωp,q(M)→ Ωn−p,n−q(M)

satisfying

〈θ, ψ〉ω
n

n!
= θ ∧ ∗ψ

for all θ, ψ ∈ Ωp,q(M). Here n = dimM . For Kähler metrics, ∗ψ is harmonic if
and only if ψ is. So we have a conjugate linear isomorphism

∗ : Hp,q
∂̄

(M)→ Hn−p,n−q
∂̄

(M)

and hence
hp,q = hn−p,n−q. (7)
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12.4 Calculations of some Hodge diamonds for Calabi-
Yaus

We want to work out the general form of the Hodge diamond for a simply
connected Calabi-Yau 3-fold. We’ll warm up by computing the Hodge diamond
of a Calabi-Yau curve M . The Hodge diamond is

h1,1

h0,1 h1,0

h0,0

Since M is a connected orientable real surface, we must have b0 = b2 = 1, so by
(5), we have

1 = b0 = h0,0

and
1 = b1 = h1,1.

Since M is Calabi-Yau, we have that KM = T ∗M is the trivial bundle, so

h1,0 = dimH1,0(M) = dimH0(M,T ∗M) = 1

and by (6),
h0,1 = h1,0 = 1.

So the Hodge diamond is just

1

1 1

1

In particular, M is an elliptic curve.
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Now consider a simply connected Calabi-Yau 3-fold M . The Hodge diamond is

h3,3

h2,3 h3,2

h1,3 h2,2 h3,1

h0,3 h1,2 h2,1 h3,0

h0,2 h1,1 h2,0

h0,1 h1,0

h0,0

Since M is an orientable, connected real 6-manifold, we have b6 = b0 = 1, so by
the Hodge decomposition (5),

h0,0 = h3,3 = 1.

Since M is simply connected, b1 = 0, so

h0,1 = h1,0 = 0

by (5). This also gives, by the Hodge star (7), that

h3,2 = h2,3 = 0.

Applying Serre duality (4), we also get

h0,3 = 1; h0,2 = 0.

By Hodge star (7), we also have

h3,1 = 0.

Applying complex conjugation (6), we get

h3,0 = 1; h2,0 = h1,3 = 0.

Finally, the Hodge star (7) also gives us that

h2,2 = h1,1; h1,2 = h2,1.
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So the Hodge diamond for any simply connected Calabi-Yau 3-fold looks like

1

0 0

0 h1,1 0

1 h2,1 h2,1 1

0 h1,1 0

0 0

1
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