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A Natural Question

M = closed smooth manifold of finite dimension

Homotopy group πn(M) = [Sn,M]

A Natural Question

How to compute π∗(M)?

It is an “impossible task” to get a complete answer!

e.g. πn(Sm)?

We know a lot about spheres, etc
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Homotopy groups of spheres
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Alternative Questions

We can ask some more “accessible” questions

Reasonable Questions

To describe π∗(M) in terms of the homotopy groups of
“smaller/simpler” spaces

To study theoretical information of π∗(M)

In several cases, the above questions can be approached

One method: loop homotopy decomposition
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A Motivational Question

One of the two big, driving conjectures in unstable homotopy
theory:

Moore conjecture; ’70s

For a simply connected finite complex Z , the following are
equivalent

at any prime p

pN ·
(
p torsions of π∗(Z )

)
= 0

for sufficiently large N;

π∗(Z )⊗Q is finite dimensional.

The conjecture is open
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A Looped Question

Figure: Loops on a surface
T. Lawson, Topology: a geometric approach

loop space ΩM := Map∗(S
1,M)

loop homotopy decomposition
ΩM ' Y × Z

A Looped Question

To prove loop homotopy decomposition of M into more “familiar”
pieces

“smaller/simpler/familiar” spaces: CW complexes with a few
number of cells, etc

e.g. Sm, Pm(pr ) Moore space, Sn{pr} the homotopy fiber of
pr : Sn → Sn, etc
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Classical examples: Hopf fibration

In 1931, Hopf discovered Hopf fibration S1 −→ S3 −→ S2, which
can be viewed as the beginning of homotopy theory.

Figure: A family of fibres
https://www.youtube.com/watch?v=Rj6p3NDDtmE

S1 −→ S2n+1 −→ CPn

S3 −→ S4n+3 −→ HPn

S7 −→ S15 −→ S8

which imply

ΩCPn ' S1 × ΩS2n+1

ΩHPn ' S3 × ΩS4n+3

ΩS8 ' S7 × ΩS15
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Classical examples: Lie groups

In 1953, Serre showed homotopy decompositions of Lie groups
rationally and localized at large primes.

p > 2n − 1, SO(2n + 1) 'p S3 × · · · × S4n−1,

p > 2n − 3, SO(2n) 'p S3 × · · · × S4n−5 × S2n−1

p > n − 1, SU(n) 'p S3 × · · · × S2n−1

p > 2n − 1, Sp(n) 'p S3 × · · · × S4n−1

p > 5, G2 'p S3 × S11

p > 11, F4 'p S3 × S11 × S15 × S23

p > 11, E6 'p S3 × S9 × S11 × S15 × S17 × S23

p > 17, E7 'p S3 × S11 × S15 × S19 × S23 × S27 × S35

p > 29, E8 'p S3×S15×S23×S27×S35×S39×S47×S59

Recall ΩBG ' G .
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The first modern study

M= (n − 1)-connected 2n-manifold, n ≥ 2

Hn(M) ∼= Z⊕k , k ≥ 2

Theorem (Beben-Theriault; ’14)

When n 6= 2, 4, 8,

ΩM ' Ω(Sn × Sn)× Ω
(
Jn ∨ (Jn ∧ Ω(Sn × Sn))

)
When n = 2,

ΩM ' S1 × Ω(S2 × S3)× Ω
(
J2 ∨ (J2 ∧ Ω(S2 × S3))

)
where Jn =

∨
k−2

Sn, J2 =
∨
k−2

(S2 ∨ S3).

ΩM is homotopy equivalent to a product of loops on
simply-connected spheres (with S1 when n = 2).
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Concrete studies

Studies on concrete cases of k-connected m-manifolds:

k = n − 1, m = 2n: Beben-Theriault (’14);

k = n − 1, m = 2n + 1: Beben-Wu (’15), Huang-Theriault
(’21);

k = n − 2, m = 2n (n > 3): Chenery (’22);

k = 1, m = 5: Beben-Theriault (’18), Theriault (’20);

k = 1, m = 6: Huang (’21).

The loop decompositions of these concrete manifolds support
Moore conjecture.
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One more example

N= 1-connected 4-manifold

H2(N) ∼= Z⊕d , d ≥ 2

Sn −→ M −→ N, n ≥ 2

Theorem (Huang; 2022)

If the sphere bundle is induced from a vector bundle, then

ΩM ' S1 × ΩSn × Ω(S2 × S3)× Ω
(
J ∨ (J ∧ Ω(S2 × S3))

)
where J =

∨
d−2

(S2 ∨ S3).

ΩM is homotopy equivalent to a product of loops on
simply-connected spheres with S1
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Theoretical studies

From ’21 to present, Huang-Theriault have made new progresses
on homotopy of manifolds from more theoretical point of view,
including

(Unstable/Integral/Local homotopy)

manifolds with a prescribed embedding

blow ups

stabilized manifolds

(Rational homotopy)

open books

free loop spaces
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Some notations

Let X = (X , ∗) be a based CW -complex.

ΩX := Map∗(S
1,X ):

(based) mapping space of base maps;

ΣX = S1 ∧ X := [0,1]×X
({0,1}×X )∪([0,1]×{∗}) :

suspension of X

If M is a closed m-manifolds,

M0: the manifold with a small disc Dm removed.

Have the inclusion Sm−1 = ∂M0
i
↪→ M0 of the boundary.
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Stabilization of manifolds

Kreck (’15): consider diffeomorphism classes of smooth
manifolds modulo connected sum with a prescribed manifold
T .

Two typical choices of T : Sn × Sn, or CPn.

T -stabilization: N#T .

A problem in geometric topology: classify smooth manifolds
up to T -stabilizations.

T = Sn × Sn: Kreck (’99);

T = CP2: Kasprowski, Powell and Teichner (’21), Kreck (’99)
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Homotopy of manifolds stabilized by projective spaces

N = connected closed 2n-dimensional smooth manifold

F = homotopy fibre of S2n−1 i
↪→ N0

Theorem (Huang-Theriault, ’21)

if n ≥ 2 is even, Ω(N#CPn) ' S1 × ΩN0 × ΩΣ2F ;

if n ≥ 2 is odd, Ω(N#CPn) '{ 1
2
} S

1 × ΩN0 × ΩΣ2F ;

if n ≥ 4 is even, Ω(N#HP
n
2 ) '{ 1

2
, 1

3
} S

3 × ΩN0 × ΩΣ4F ;

if n = 8, Ω(N#OP2) '{ 1
2
, 1

3
, 1

5
} S

7 × ΩN0 × ΩΣ8F .

A CPn-stabilization is a blow up at a point.

(Duan) A canonical circle bundle over a CPn-stabilization is
the effect of a 1-surgery.
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Example

For n ≥ 2, there are homotopy equivalences

Ω(CP2n#CP2n) ' S1 × S1 × ΩS3 × ΩS4n−1,

Ω(CP2n#HPn) ' S1 × S3 × ΩS5 × ΩS4n−1,

Ω(CP8#OP2) ' S1 × S7 × ΩS9 × ΩS15,

Ω(CP2n+1#CP2n+1) '{ 1
2
} S

1 × S1 × ΩS3 × ΩS4n+1,

Ω(HPn#HPn) '{ 1
2
, 1

3
} S

3 × S3 × ΩS7 × ΩS4n−1,

Ω(HP4#OP2) '{ 1
2
, 1

3
} S

3 × S7 × ΩS11 × ΩS15,

Ω(OP2#OP2) '{ 1
2
, 1

3
, 1

5
} S

7 × S7 × ΩS15 × ΩS15.

Duan (’22) has shown the results for CP2n#CP2n and
CP2n#HPn by more geometrical arguments.

He needs non-spin condition.
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General blow ups

N = connected closed oriented smooth manifold

a codimension 2n embedding B ↪→ N with a complex normal
bundle ν

V = closed neighborhood of B in N, and V ∼= Dν

Nc = the closure of the complement of V in N

∂V
ιν //

ιc

��

V

��

∂V
q //

ιc

��

Pν

j
��

Nc
// N, Nc

r // Ñ,

Pν = the projective bundle of ν

Definition (blow up)

Ñ is called the blow up of N along B.
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Homotopy of blow ups

B is (k − 1)-connected and of dimension m

F = homotopy fibre of ∂V
ιc
↪→ Nc .

Theorem (Huang-Theriault; ’22)

Suppose m ≤ 2n − 4. Let p be a prime such that

p > 1
2 (m − k) + 1, (p − 1) - 2s for any k + 2 ≤ 4s ≤ m + 2,

and

H∗(B;Z) is p-torsion free.

Then there is a p-local homotopy equivalence

ΩÑ 'p S1 × ΩNc × ΩΣ2F .
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Remark

Let ds is the denominator of Bs/4s, where Bs is the s-th
Bernoulli number defined by

z

ez − 1
= 1− 1

2
z −

∑
s≥1

Bs
z2s

(2s)!
.

The arithmetical condition on p:

p 6∈ {prime p | (p − 1) divides 2s, k + 2 ≤ 4s ≤ m + 2}
= {p | p divides ds , k + 2 ≤ 4s ≤ m + 2}.

We are localizing away from the image of stable
J-homomorphism (Adams (’66) and Quillen (’71)).

We introduce a type of “fibrewise surgery”

A blow up is a “fibrewise CPn-stabilization”

A canonical circle bundle over a fibrewise CPn-stabilization is
the effect of a fibrewise 1-surgery.
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Open books

Let M be a simply connected closed n-manifold.

Figure: What is an ... open
book Giroux, Notice AMS 52 (1), 2005

V simply connected compact

dim(V ) = n − 1, ∂V 6= ∅

h : V
∼=→ V

h|∂V = id

Vh = the mapping torus of h

M ∼=diff (∂V × D2) ∪id Vh

Definition (open book)

M is called an open book, with V = page, h = monodromy.
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Classical rational dichotomy

(Félix, ’89)

Any simply-connected finite CW -complex X is either:

rationally elliptic, that is, π∗(X )⊗Q is finite dimensional, or
else

rationally hyperbolic, that is, π∗(X )⊗Q grows exponentially.
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A special case

M = open book as before with the monodromy h : V → V

F = homtopy fibre of ∂V
i
↪→ V

Theorem (Huang-Theriault; ’21)

Suppose h ' id relative to ∂V . Then there is a homotopy
equivalence

ΩM ' ΩV × ΩΣ2F .

One can obtain an extended rational dichotomy from the
above theorem.

Indeed, we can prove it in more general context.
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Extended rational dichotomy of open books

M = open book as before with the monodromy h : V → V

F = homtopy fibre of ∂V
i
↪→ V

Theorem (Huang-Theriault; ’21; weak version)

Suppose the monodromy is of finite order and acts nilpotently on
π∗(V ). Then either:

(1) M is rationally elliptic, in which case

V is also rationally elliptic
F 'Q S l for some l ∈ Z+, and
π∗(M)⊗Q ∼= (π∗(V )⊗Q)⊕ (π∗(S l+2)⊗Q);

(2) M is rationally hyperbolic, in which case

either V is rationally hyperbolic, or
F 6'Q S l for any l ∈ Z+.
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A few words on methodology: unstable homotopy theory

homotopy fibration : F
i //

f
��

E

��

p // B
r

Ωp◦r'id

ff

X // Y : homotopy pushout

Theorem (Huang-Theriualt; ’22)

Under reasonable conditions, there is a homotopy equivalence

ΩY ' ΩB × ΩX × Ω(H ∗ ΩB),

where H is the homotopy fibre of F
f−→ X .

It generalizes a classical theorem of (Ganea; ’65)
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A cubic diagram technique

A′

~~

//

f1

��

B ′

}}
f2

��
C ′

f3
��

// D ′

f4

��
A

}}

// B
}}

C // D

Mather’s Cube Lemma; ’76

Suppose in the above homotopy commutative diagram

the vertical faces are homotopy pullbacks, and

the bottom face is a homotopy pushout.

Then the top face is a homotopy pushout.
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Thanks very much
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S1

tt ))

S2n−1 × S1 id×ι//

(ι×id)◦φx
��

S2n−1 × D2

��

∂V × S1 id×ι//

(ιν×id)◦Φ
��

∂V × D2

��
//

��

D2n × S1 // S2n+1, V × S1 // P̂Bν

�� ��
B

S2n−1 ιη //

ι
��

Dη

��

∂V
ιλ //

ιν
��

Dλν

ν
��

//

KK

D2n // CPn, V
λ // PBν
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The homotopy conditions are necessary

Consider the Milnor’s open book decompositions of S2n+1

determined by the complex polynomial

f (z1, . . . , zn+1) = (z1)a1 + · · ·+ (zn)an + (zn+1)an+1 .

If 3 ≤ a1 ≥ · · · ≥ an+1 ≥ 2, then

S2n+1 is elliptic,

the page V '
∨
µ
Sn is hyperbolic, µ =

n+1∏
j=1

(ai − 1).

It follows that either the monodromy is of infinite order, or it
acts non-nilpotently on the homology groups H∗(V ;Z).

Huang Ruizhi Loop decomposition of manifolds



The homotopy conditions are necessary

If a1 = · · · = an+1 = 2, we can construct an open book
decomposition of a homotopy sphere Σ2n+1

Σ2n+1 ∼= ((∂V#∂V )× D2) ∪id (V#V )h#h.

satisfying that

its monodromy h#h is of order at most 8
its page V#V ' Sn ∨ Sn is rationally hyperbolic, and
Σ2n+1 ' S2n+1 is rational elliptic

It follows that the monodromy h#h acts non-nilpotently on
the homology groups H∗(V#V ;Z).
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