Loop decomposition of manifolds

Huang Ruizhi

AMSS, huangrz@amss.ac.cn

https://sites.google.com/site/hrzsea/

YMSC Topology Seminar

Mar. 07, 2023

Huang Ruizhi Loop decomposition of manifolds

イロン 不同 とくほう イロン

э

- M = closed smooth manifold of finite dimension
- Homotopy group $\pi_n(M) = [S^n, M]$

A Natural Question

How to compute $\pi_*(M)$?

- It is an "impossible task" to get a complete answer!
- e.g. $\pi_n(S^m)$?
- We know a lot about spheres, etc

イロト 不得 トイヨト イヨト 二日

Homotopy groups of spheres

	π1	Π2	Π3	π ₄	π ₅	π ₆	π ₇	π ₈	π ₉	π ₁₀	π ₁₁	π ₁₂	π ₁₃	π ₁₄	π ₁₅
S ⁰	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S ¹	z	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S ²	0	z	z	Z2	Z2	Z ₁₂	Z2	Z2	Z ₃	Z ₁₅	Z2	Z ₂ ²	Z ₁₂ ×Z ₂	$Z_{84} \times Z_2^2$	Z22
S ³	0	0	z	Z2	Z2	Z ₁₂	Z2	Z2	Z ₃	Z ₁₅	Z2	Z_2^2	Z ₁₂ ×Z ₂	$Z_{84} \times Z_2^2$	Z22
S ⁴	0	0	0	z	Z2	Z2	Z×Z ₁₂	Z22	Z_2^2	Z ₂₄ ×Z ₃	Z ₁₅	Z ₂	Z ₂ ³	Z ₁₂₀ × Z ₁₂ ×Z ₂	$Z_{84} \times Z_2^5$
S ⁵	0	0	0	0	z	Z ₂	Z2	Z ₂₄	Z2	Z ₂	Z2	Z ₃₀	Z ₂	Z_2^3	Z ₇₂ ×Z ₂
S ⁶	0	0	0	0	0	z	Z ₂	Z2	Z ₂₄	0	z	Z ₂	Z ₆₀	Z ₂₄ ×Z ₂	Z ₂ ³
S 7	0	0	0	0	0	0	z	Z ₂	Z ₂	Z ₂₄	0	0	Z2	Z ₁₂₀	Z ₂ ³
S ⁸	0	0	0	0	0	0	0	z	Z ₂	Z ₂	Z ₂₄	0	0	Z2	Z×Z ₁₂₀

Huang Ruizhi Loop decomposition of manifolds

・ロト ・回ト ・ヨト ・ヨト

æ

We can ask some more "accessible" questions

Reasonable Questions

- To describe π_{*}(M) in terms of the homotopy groups of "smaller/simpler" spaces
- To study theoretical information of $\pi_*(M)$

- In several cases, the above questions can be approached
- One method: loop homotopy decomposition

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

One of the two big, driving conjectures in unstable homotopy theory:

Moore conjecture; '70s

For a simply connected finite complex Z, the following are equivalent

• at any prime p

$$p^N \cdot (p \text{ torsions of } \pi_*(Z)) = 0$$

for sufficiently large N;

• $\pi_*(Z)\otimes \mathbb{Q}$ is finite dimensional.

The conjecture is open

< ロ > < 同 > < 回 > < 回 > < □ > <

A Looped Question

- loop space $\Omega M := \operatorname{Map}_*(S^1, M)$
- loop homotopy decomposition $\Omega M \simeq Y \times Z$

Figure: Loops on a surface T. Lawson, Topology: a geometric approach

A Looped Question

To prove loop homotopy decomposition of M into more "familiar" pieces

- "smaller/simpler/familiar" spaces: CW complexes with a few number of cells, etc
- e.g. S^m , $P^m(p^r)$ Moore space, $S^n\{p^r\}$ the homotopy fiber of $p^r: S^n \to S^n$, etc

In 1931, Hopf discovered Hopf fibration $S^1 \longrightarrow S^3 \longrightarrow S^2$, which can be viewed as the beginning of homotopy theory.

- $S^1 \longrightarrow S^{2n+1} \longrightarrow \mathbb{C}P^n$ • $S^3 \longrightarrow S^{4n+3} \longrightarrow \mathbb{H}P^n$
- $S^7 \longrightarrow S^{15} \longrightarrow S^8$

which imply

- $\Omega \mathbb{C}P^n \simeq S^1 \times \Omega S^{2n+1}$
- $\Omega \mathbb{H} P^n \simeq S^3 \times \Omega S^{4n+3}$
- $\Omega S^8 \simeq S^7 imes \Omega S^{15}$

Figure: A family of fibres https://www.youtube.com/watch?v=Rj6p3NDDtmE

イロト 不得 トイヨト イヨト 二日

In 1953, Serre showed homotopy decompositions of Lie groups rationally and localized at large primes.

•
$$p > 2n - 1$$
, $SO(2n + 1) \simeq_p S^3 \times \cdots \times S^{4n-1}$,
• $p > 2n - 3$, $SO(2n) \simeq_p S^3 \times \cdots \times S^{4n-5} \times S^{2n-1}$
• $p > n - 1$, $SU(n) \simeq_p S^3 \times \cdots \times S^{2n-1}$
• $p > 2n - 1$, $Sp(n) \simeq_p S^3 \times \cdots \times S^{4n-1}$
• $p > 5$, $G_2 \simeq_p S^3 \times S^{11}$
• $p > 11$, $F_4 \simeq_p S^3 \times S^{11} \times S^{15} \times S^{23}$
• $p > 11$, $E_6 \simeq_p S^3 \times S^9 \times S^{11} \times S^{15} \times S^{17} \times S^{23}$
• $p > 17$, $E_7 \simeq_p S^3 \times S^{11} \times S^{15} \times S^{19} \times S^{23} \times S^{27} \times S^{35}$
• $p > 29$, $E_8 \simeq_p S^3 \times S^{15} \times S^{23} \times S^{27} \times S^{35} \times S^{39} \times S^{47} \times S^{59}$

Recall $\Omega BG \simeq G$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The first modern study

Theorem (Beben-Theriault; '14)

When $n \neq 2$, 4, 8,

$$\Omega M \simeq \Omega(S^n imes S^n) imes \Omega(J_n \vee (J_n \wedge \Omega(S^n imes S^n)))$$

When n = 2,

$$\Omega M \simeq S^1 imes \Omega(S^2 imes S^3) imes \Omegaig(J_2 ee (J_2 \wedge \Omega(S^2 imes S^3))ig)$$

where $J_n = \bigvee_{k=2} S^n$, $J_2 = \bigvee_{k=2} (S^2 \vee S^3)$.

• ΩM is homotopy equivalent to a product of loops on simply-connected spheres (with S^1 when n = 2).

Studies on concrete cases of k-connected m-manifolds:

•
$$k = n - 1$$
, $m = 2n$: Beben-Theriault ('14);

k = *n* − 1, *m* = 2*n* + 1: Beben-Wu ('15), Huang-Theriault ('21);

•
$$k = n - 2$$
, $m = 2n$ $(n > 3)$: Chenery ('22);

• k = 1, m = 5: Beben-Theriault ('18), Theriault ('20);

•
$$k = 1$$
, $m = 6$: Huang ('21).

The loop decompositions of these concrete manifolds support Moore conjecture.

ヘロト ヘヨト ヘヨト

One more example

- N= 1-connected 4-manifold
- $H^2(N) \cong \mathbb{Z}^{\oplus d}, \ d \geq 2$
- $S^n \longrightarrow M \longrightarrow N$, $n \ge 2$

Theorem (Huang; 2022)

If the sphere bundle is induced from a vector bundle, then

$$\Omega M \simeq S^1 imes \Omega S^n imes \Omega (S^2 imes S^3) imes \Omega (J \lor (J \land \Omega (S^2 imes S^3)))$$

where
$$J = \bigvee_{d-2} (S^2 \vee S^3)$$
.

• ΩM is homotopy equivalent to a product of loops on simply-connected spheres with S^1

From '21 to present, Huang-Theriault have made new progresses on homotopy of manifolds from more theoretical point of view, including

(Unstable/Integral/Local homotopy)

- manifolds with a prescribed embedding
- blow ups
- stabilized manifolds

(Rational homotopy)

- open books
- free loop spaces

Let X = (X, *) be a based *CW*-complex.

 ΩX := Map_{*}(S¹, X): (based) mapping space of base maps;
 ΣX = S¹ ∧ X := [0,1]×X ({0,1}×X)∪([0,1]×{*}):

- 4 同 6 4 日 6 4 日 6

If M is a closed m-manifolds,

suspension of X

- M_0 : the manifold with a small disc D^m removed.
- Have the inclusion $S^{m-1} = \partial M_0 \stackrel{i}{\hookrightarrow} M_0$ of the boundary.

- Kreck ('15): consider diffeomorphism classes of smooth manifolds modulo connected sum with a prescribed manifold *T*.
- Two typical choices of $T: S^n \times S^n$, or $\mathbb{C}P^n$.
- T-stabilization: N # T.
- A problem in geometric topology: classify smooth manifolds up to *T*-stabilizations.
- $T = S^n \times S^n$: Kreck ('99);
- $T = \mathbb{C}P^2$: Kasprowski, Powell and Teichner ('21), Kreck ('99)

・ 同 ト ・ ヨ ト ・ ヨ ト

Homotopy of manifolds stabilized by projective spaces

- N = connected closed 2*n*-dimensional smooth manifold
- F = homotopy fibre of $S^{2n-1} \stackrel{i}{\hookrightarrow} N_0$

Theorem (Huang-Theriault, '21)

- if $n \geq 2$ is even, $\Omega(N \# \mathbb{C}P^n) \simeq S^1 \times \Omega N_0 \times \Omega \Sigma^2 F$;
- if $n \geq 2$ is odd, $\Omega(N \# \mathbb{C}P^n) \simeq_{\{\frac{1}{2}\}} S^1 \times \Omega N_0 \times \Omega \Sigma^2 F$;
- if $n \geq 4$ is even, $\Omega(N \# \mathbb{H} P^{\frac{n}{2}}) \simeq_{\{\frac{1}{2}, \frac{1}{3}\}} S^3 \times \Omega N_0 \times \Omega \Sigma^4 F$;

• if
$$n = 8$$
, $\Omega(N \# \mathbb{O}P^2) \simeq_{\{\frac{1}{2}, \frac{1}{3}, \frac{1}{5}\}} S^7 \times \Omega N_0 \times \Omega \Sigma^8 F$.

- A $\mathbb{C}P^n$ -stabilization is a blow up at a point.
- (Duan) A canonical circle bundle over a $\mathbb{C}P^n$ -stabilization is the effect of a 1-surgery.

Example

For $n \ge 2$, there are homotopy equivalences

$$\begin{split} \Omega(\mathbb{C}P^{2n}\#\mathbb{C}P^{2n}) &\simeq S^1 \times S^1 \times \Omega S^3 \times \Omega S^{4n-1}, \\ \Omega(\mathbb{C}P^{2n}\#\mathbb{H}P^n) &\simeq S^1 \times S^3 \times \Omega S^5 \times \Omega S^{4n-1}, \\ \Omega(\mathbb{C}P^8\#\mathbb{O}P^2) &\simeq S^1 \times S^7 \times \Omega S^9 \times \Omega S^{15}, \\ \Omega(\mathbb{C}P^{2n+1}\#\mathbb{C}P^{2n+1}) &\simeq_{\{\frac{1}{2}\}} S^1 \times S^1 \times \Omega S^3 \times \Omega S^{4n+1}, \\ \Omega(\mathbb{H}P^n\#\mathbb{H}P^n) &\simeq_{\{\frac{1}{2},\frac{1}{3}\}} S^3 \times S^3 \times \Omega S^7 \times \Omega S^{4n-1}, \\ \Omega(\mathbb{H}P^4\#\mathbb{O}P^2) &\simeq_{\{\frac{1}{2},\frac{1}{3}\}} S^3 \times S^7 \times \Omega S^{11} \times \Omega S^{15}, \\ \Omega(\mathbb{O}P^2\#\mathbb{O}P^2) &\simeq_{\{\frac{1}{2},\frac{1}{2},\frac{1}{3}\}} S^7 \times S^7 \times \Omega S^{15} \times \Omega S^{15}. \end{split}$$

- Duan ('22) has shown the results for $\mathbb{C}P^{2n} \# \mathbb{C}P^{2n}$ and $\mathbb{C}P^{2n} \# \mathbb{H}P^n$ by more geometrical arguments.
- He needs non-spin condition.

イロト 不得 トイヨト イヨト 二日

General blow ups

- N = connected closed oriented smooth manifold
- a codimension 2n embedding $B \hookrightarrow N$ with a complex normal bundle ν
- V = closed neighborhood of B in N, and $V \cong D\nu$
- N_c = the closure of the complement of V in N

• $P_{
u} =$ the projective bundle of u

Definition (blow up)

 \widetilde{N} is called the blow up of N along B.

Homotopy of blow ups

• B is (k-1)-connected and of dimension m

•
$$F =$$
 homotopy fibre of $\partial V \stackrel{\iota_c}{\hookrightarrow} N_c$.

Theorem (Huang-Theriault; '22)

Suppose $m \leq 2n - 4$. Let p be a prime such that

- $p > \frac{1}{2}(m-k) + 1$, $(p-1) \nmid 2s$ for any $k+2 \le 4s \le m+2$, and
- $H_*(B;\mathbb{Z})$ is *p*-torsion free.

Then there is a *p*-local homotopy equivalence

$$\Omega \widetilde{N} \simeq_{p} S^{1} \times \Omega N_{c} \times \Omega \Sigma^{2} F.$$

Remark

• Let d_s is the denominator of $B_s/4s$, where B_s is the *s*-th Bernoulli number defined by

$$\frac{z}{e^z-1} = 1 - \frac{1}{2}z - \sum_{s \ge 1} B_s \frac{z^{2s}}{(2s)!}.$$

• The arithmetical condition on *p*:

 $p \notin \{ \text{prime } p \mid (p-1) \text{ divides } 2s, \ k+2 \le 4s \le m+2 \}$ $= \{ p \mid p \text{ divides } d_s, \ k+2 \le 4s \le m+2 \}.$

- We are localizing away from the image of stable *J*-homomorphism (Adams ('66) and Quillen ('71)).
- We introduce a type of "fibrewise surgery"
- A blow up is a "fibrewise CPⁿ-stabilization"
- A canonical circle bundle over a fibrewise $\mathbb{C}P^n$ -stabilization is the effect of a fibrewise 1-surgery.

Open books

Let M be a simply connected closed n-manifold.

- V simply connected compact
- dim(V) = n 1, $\partial V \neq \emptyset$
- $h: V \stackrel{\cong}{\to} V$
- $h_{|\partial V} = \mathrm{id}$
- V_h = the mapping torus of h

•
$$M \cong_{\operatorname{diff}} (\partial V \times D^2) \cup_{\operatorname{id}} V_h$$

Figure: What is an ... open book Giroux, Notice AMS 52 (1), 2005

・ロン ・雪 と ・ ヨ と ・ ヨ と …

Definition (open book)

M is called an open book, with V = page, h = monodromy.

(Félix, '89)

Any simply-connected finite CW-complex X is either:

- rationally elliptic, that is, $\pi_*(X) \otimes \mathbb{Q}$ is finite dimensional, or else
- rationally hyperbolic, that is, $\pi_*(X) \otimes \mathbb{Q}$ grows exponentially.

イロト 不得 トイヨト イヨト 二日

• M= open book as before with the monodromy h:V
ightarrow V

•
$$F = \text{homtopy fibre of } \partial V \stackrel{i}{\hookrightarrow} V$$

Theorem (Huang-Theriault; '21)

Suppose $h \simeq id$ relative to ∂V . Then there is a homotopy equivalence

 $\Omega M \simeq \Omega V \times \Omega \Sigma^2 F.$

- One can obtain an extended rational dichotomy from the above theorem.
- Indeed, we can prove it in more general context.

イロト 不得 トイヨト イヨト

Extended rational dichotomy of open books

• M= open book as before with the monodromy h:V
ightarrow V

•
$$F = \text{homtopy fibre of } \partial V \stackrel{i}{\hookrightarrow} V$$

Theorem (Huang-Theriault; '21; weak version)

Suppose the monodromy is of finite order and acts nilpotently on $\pi_*(V)$. Then either:

- (1) M is rationally elliptic, in which case
 - V is also rationally elliptic

•
$$F \simeq_{\mathbb{Q}} S^{I}$$
 for some $I \in \mathbb{Z}^{+}$, and

- $\pi_*(\tilde{M})\otimes \mathbb{Q}\cong (\pi_*(V)\otimes \mathbb{Q})\oplus (\pi_*(S^{l+2})\otimes \mathbb{Q});$
- (2) M is rationally hyperbolic, in which case
 - either V is rationally hyperbolic, or
 - $F \not\simeq_{\mathbb{Q}} S^{I}$ for any $I \in \mathbb{Z}^{+}$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

A few words on methodology: unstable homotopy theory

homotopy fibration :

- 4 同 2 4 日 2 4 日 2 - 日

Theorem (Huang-Theriualt; '22)

Under reasonable conditions, there is a homotopy equivalence

 $\Omega Y \simeq \Omega B \times \Omega X \times \Omega (H * \Omega B),$

where *H* is the homotopy fibre of $F \xrightarrow{f} X$.

• It generalizes a classical theorem of (Ganea; '65)

A cubic diagram technique

Mather's Cube Lemma; '76

Suppose in the above homotopy commutative diagram

- the vertical faces are homotopy pullbacks, and
- the bottom face is a homotopy pushout.

Then the top face is a homotopy pushout.

Thanks very much

Huang Ruizhi Loop decomposition of manifolds

・ロト ・回ト ・ヨト ・ヨト

э

Consider the Milnor's open book decompositions of S^{2n+1} determined by the complex polynomial

$$f(z_1,\ldots,z_{n+1})=(z_1)^{a_1}+\cdots+(z_n)^{a_n}+(z_{n+1})^{a_{n+1}}$$

• If
$$3 \le a_1 \ge \cdots \ge a_{n+1} \ge 2$$
, then
• S^{2n+1} is elliptic,
• the page $V \simeq \bigvee_{\mu} S^n$ is hyperbolic, $\mu = \prod_{i=1}^{n+1} (a_i - 1)$.

ц

It follows that either the monodromy is of infinite order, or it acts non-nilpotently on the homology groups $H_*(V;\mathbb{Z})$.

・ 同 ト ・ ヨ ト ・ ヨ ト

If a₁ = ··· = a_{n+1} = 2, we can construct an open book decomposition of a homotopy sphere Σ²ⁿ⁺¹

$$\Sigma^{2n+1} \cong ((\partial V \# \partial V) \times D^2) \cup_{\mathrm{id}} (V \# V)_{h \# h}.$$

satisfying that

- its monodromy h # h is of order at most 8
- its page $V \# V \simeq S^n \vee S^n$ is rationally hyperbolic, and
- $\Sigma^{2n+1} \simeq S^{2n+1}$ is rational elliptic

It follows that the monodromy h#h acts non-nilpotently on the homology groups $H_*(V\#V;\mathbb{Z})$.

・ロト ・日 ・ ・ 日 ・ ・ 日 ・ ・ 日