Systolic inequality on Riemannian manifolds with bounded Ricci curvature

Zhifei Zhu

YMSC

2023.2.28

rei znu					
tolic inequality or	n Riemannian	manifolds with	b oun de d	Ricci curvatur	e

Zhif

Svs

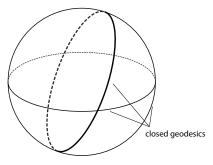
YMSC 1 / 20

< 同 ト < 三

Geodesics

Definition

The systole sys(M) is the least length of a non-trivial closed geodesic.

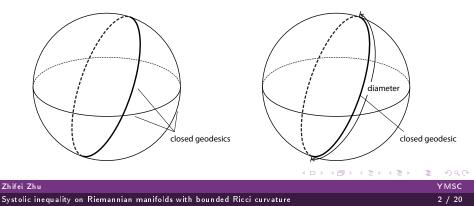


	《曰》《圖》《臣》《臣》	ヨ うくぐ
Zhifei Zhu		YMSC
Systolic inequality on Riemannian manifolds with bounded Ricci curvature		2 / 20

Geodesics

Definition

The systole sys(M) is the least length of a non-trivial closed geodesic.



Zhife Syste

Loewner inequality

Suppose that M is homeomorphic to T^2 ,

$$sys^2 \leq rac{2}{\sqrt{3}}Area(M)$$

ei Zhu	YMSC
olic inequality on Riemannian manifolds with bounded Ricci curvature	3 / 20

-

Loewner inequality

Suppose that M is homeomorphic to T^2 ,

$$sys^2 \leq rac{2}{\sqrt{3}}Area(M)$$

Pu's inequality (1949)

Systolic inequality on Riemannian ma

Suppose that M is homeomorphic to $\mathbb{R}P^2$,

$$sys^2 \leq \frac{\pi}{2}Area(M)$$

	YMSC
anifolds with bounded Ricci curvature	3 / 20

イロト イボト イヨト イヨト

Zhifei Zhu

Zhifei Zhu

C. Croke (88), improved by A. Nabutovsky-R. Rotman(02), S. Sabourau(04), and Rotman(06)

Suppose that M is homeomorphic to S^2 ,

 $sys^2 \leq 32Area(M)$

Systolic inequality on Riemannian manifolds with bounded Ricci curvature

-

Zhifei Zhu

C. Croke (88), improved by A. Nabutovsky-R. Rotman(02), S. Sabourau(04), and Rotman(06)

Suppose that M is homeomorphic to S^2 ,

 $sys^2 \leq 32Area(M)$

Conjecture. (E. Calabi, J. Cao (92); Croke (88))

The best constant is $2\sqrt{3}$.

Systolic inequality on Riemannian manifolds with bounded Ricci curvature

-

Question. (M. Gromov (83))

Is it true that the systole of an *n*-dimensional Riemannian manifold can be bounded by $constant(n)vol(M)^{1/n}$?

Remark.

Zhifei Zhu

Similar questions can be asked about diameter and other geometric quantities. Note that if M is not simply-connected, then an upper-bound of systole in terms of diameter is trivial.

Example. (F. Balacheff, C. Croke and M. Katz (09))

There exists (Zoll) Riemannian metric on S^2 such that sys > 2D, where D is the diameter.

イロト イポト イヨト イヨト

3

Example. (F. Balacheff, C. Croke and M. Katz (09))

There exists (Zoll) Riemannian metric on S^2 such that sys > 2D, where D is the diameter.

Croke (88) (9D), improved by M. Maeda (94) (5D), Sabourau(04) (4D), and Nabutovsky-Rotman(09) (4D)

Suppose that M is homeomorphic to S^2 ,

sys $\leq 4D$

Systolic inequality on Riemannian manifolds with bounded Ricci curvature

Zhifei Zhu

Higher dimensional manifolds, Nabtovsky-Rotman (03)

Let M be a closed Riemannian manifold with sectional curvature \leq 1 and volume \leq V. Then

 $sys \leq 2\pi (V+1)^{c(n)V^n}.$

<ロト < 回 > < 回 > < 回 > - 三 = -

Higher dimensional manifolds, Nabtovsky-Rotman (03)

Let M be a closed Riemannian manifold with sectional curvature ≤ 1 and volume $\leq V$. Then

sys
$$\leq 2\pi (V+1)^{c(n)V^n}$$
.

Nabtovsky-Rotman (03)

Let M be a closed Riemannian manifold with sectional curvature ≥ -1 , diam $\leq D$ and volume $\geq V > 0$. Then

$$sys \leq exp(rac{exp(c_1(n)D)}{min\{1,V\}^{c_2(n)}}).$$

Zhifei Zhu

Systolic inequality on Riemannian manifolds with bounded Ricci curvature

N. Wu and Z. (19)

Zhifei Zhu

Let *M* be a closed simply-connected 4-dimensional Riemannian manifold with Ricci curvature |Ric| < 3, diam $\leq D$ and volume $\geq V > 0$. Then

sys $\leq F(V, D)$.

Moreover, F can be explicitly computed if M is Einstein.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Zhifei Zhu

Intuition

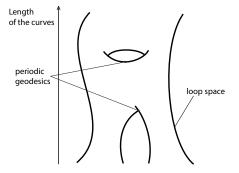
- Morse theory
- Width of a homotopy
- Cheeger-Naber Structural theorem

3

<ロト <回ト < 臣ト < 臣ト

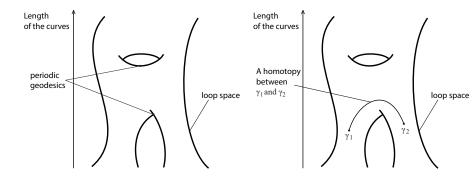
Morse theory (Lusternik-Fet)

Sy



	= *) < (*
ifei Zhu	YMSC
stolic inequality on Riemannian manifolds with bounded Ricci curvature	10 / 20

Morse theory (Lusternik-Fet)

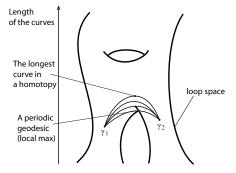


Zhifei Zhu		YMSC
Systolic inequality on Riemannian manifolds with bounded Ricci curvature	e	10 / 20

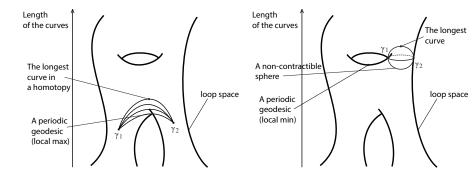
- 4回下 - 4 日下

-

Zhifei Zh Systolic i



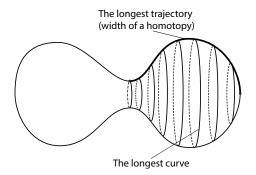
	《口》《卽》《臣》《臣》	E nac
u		YMSC
inequality on Riemannian manifolds with bounded Ricci curvature		11 / 20



		1	1		*) 4 (*
Zhifei Zhu				۲. I	/ MSC
Systolic inequality on Riemannian manifolds with bounded Ricci curvature				11	1 / 20

E . E

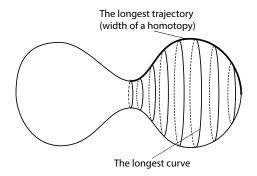
Width of a homotopy



	- 740
Zhifei Zhu	YMSC
Systolic inequality on Riemannian manifolds with bounded Ricci curvature	12 / 20

化白豆 化氟豆 化黄豆 化黄豆 二萬

Width of a homotopy



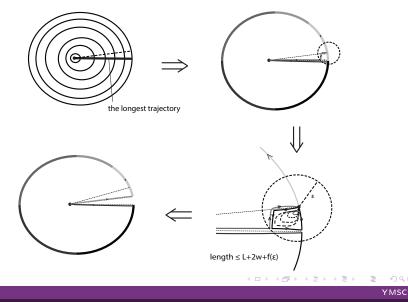
Lemma. (Alex Nabutovsky and Regina Rotman)

Control of the width. \Rightarrow Control of the longest curve during a homotopy.

Zhifei Zhu	YMSC
Systolic inequality on Riemannian manifolds with bounded Ricci curvature	12 / 20

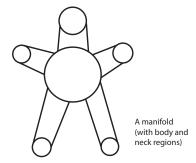
Width of a homotopy

Zhifei Zhu



Systolic inequality on Riemannian manifolds with bounded Ricci curvature

Structural theorem (Jeff Cheeger and Aaron Naber, 2015)



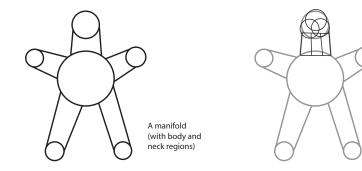
- * ロ > * 個 > * 注 > * 注 > - 注 - りへぐ

Systolic inequality on Riemannian manifolds with bounded Ricci curvature

Zhifei Zhu

YMSC 14 / 20

Structural theorem (Jeff Cheeger and Aaron Naber, 2015)



A manifold covered by "good sets"

rmsc

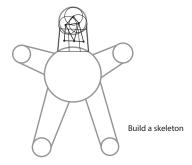
/ 20

	< □ >	< ⊡ >	< ≣ ≻	< ≣ >	
u					Y
nequality on Riemannian manifolds with bounded Ricci curvature					14

Zhifei Zhu

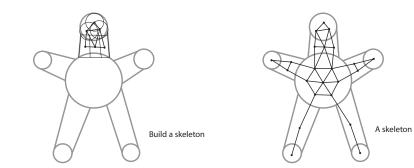
Systolic in

Zhifei Zhu Systolic ine

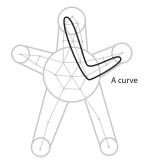


		< ⊡	•	< 문)	-	Þ	-	うく
							N	′MSC
equality on Riemannian manifolds with bounded Ricci curvature							15	5 / 20

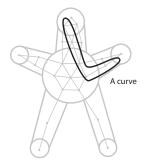
s

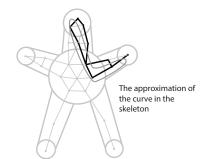


	E *) Q (*
Zhifei Zhu	YMSC
Systolic inequality on Riemannian manifolds with bounded Ricci curvature	15 / 20



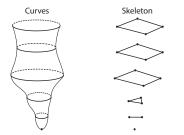
	《曰》《卽》《言》《言》	E Sac
Zhifei Zhu		YMSC
Systolic inequality on Riemannian manifolds with bounded Ricci curvature		16 / 20



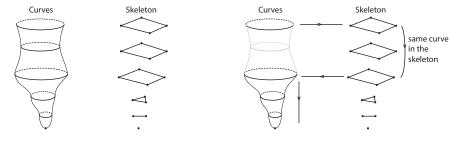


オロト スポト オヨト オヨト

Zhifei Zhu	YMSC
Systolic inequality on Riemannian manifolds with bounded Ricci curvature	16 / 20



	L - P	N N E	1 1 2 1	 *) Q (*
Zhifei Zhu				YMSC
Systolic inequality on Riemannian manifolds with bounded Ricci curvature				17 / 20



Reducing the width

Zhifei Zhu	YMSC
Systolic inequality on Riemannian manifolds with bounded Ricci curvature	17 / 20

Difficulty

The number of the edges in the approximation of $\gamma \sim \frac{\text{length}(\gamma)}{r_h}$ may not be bounded by any function of v and D.

Zhifei Zhu	YMSC
Systolic inequality on Riemannian manifolds with bounded Ricci curvature	18 / 20

イロト イロト イヨト イヨト 二日

Difficulty

Zhifei Zhu

The number of the edges in the approximation of $\gamma \sim \frac{\text{length}(\gamma)}{r_h}$ may not be bounded by any function of v and D.

Observation 1

Every closed curve is homotopic to a wedge of "almost" geodesic digons α_i through a homotopy of width bounded by $2D + \varepsilon$.

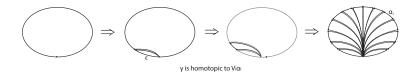
-

Difficulty

The number of the edges in the approximation of $\gamma \sim \frac{\text{length}(\gamma)}{r_h}$ may not be bounded by any function of v and D.

Observation 1

Every closed curve is homotopic to a wedge of "almost" geodesic digons α_i through a homotopy of width bounded by $2D + \varepsilon$.



Zhifei Zhu	YMSC
Systolic inequality on Riemannian manifolds with bounded Ricci curvature	18 / 20

Observation 2

If each α_i can be contracted to a point with width $\langle W_i$, then $\forall \alpha_i$ can be contracted with width $2 \cdot \max_i W_i$.

3

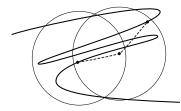
Observation 2

If each α_i can be contracted to a point with width $\langle W_i$, then $\forall \alpha_i$ can be contracted with width $2 \cdot \max_i W_i$.

Observation 3

Zhifei Zhu Svstolic inequality

The number of the edges in the approximation of a minimizing geodesic must be small (\leq 5).



	YMSC
on Riemannian manifolds with bounded Ricci curvature	19 / 20

(ロ) (四) (E) (E) (E) (E)

Summary

Zhifei Zhu

- Morse theory on the loop space vs Sweep-out of the manifold.
- Width of a homotopy: geometrically approachable.
- Cheeger-Naber Structural theorem: compute width via combinatorics.