Branching random walks on relatively hyperbolic groups

杨文元 (北京国际数学研究中心) j.w. M. Dussaule-Longmin Wang

清华丘成桐数学科学中心拓扑讨论班 2022年12月12日

Geometric setup: Cayley graph and word metric

Let G be a group generated by a finite set S with $1 \notin S = S^{-1}$. The **Cayley graph** $\mathscr{G}(G, S)$ is a graph defined as follows.

- 1 Vertex set V := G,
- 2 Two vertices $g \leftrightarrow g'$ iff $g' = g \cdot s$ for some $s \in S$.

which is equipped with combinatorial metric called word metric d_S .

Fix a scaling function $f : \mathbb{N} \to \mathbb{R}_{\geq 0}$ (eg. $f(n) = \lambda^n$ or $f(n) = n^{-2}$)

- $\sum_{n\geq 0} f(n) < \infty$.
- $\forall n \ge 0 : \lambda \le \frac{f(n+1)}{f(n)} \le 1$

Construction of Floyd boundary: fix a basepoint $o \in \mathscr{G}(G, S)$

- 1 The unit length of each edge e in $\mathscr{G}(G, S)$ is rescaled to be the **Floyd length** $\ell_f(e) \coloneqq f(n)$, where $n = d_S(o, e)$ is the word distance from edge e to o. $f_{gp}(q \prec qy) = f_p(x, y)$
- Ployd metric ρ_o(x, y) is the infimum of Floyd lengths of all possible paths between x and y.
- **3** Let \overline{G}_f be the Cauchy completion of G with respect to ρ_o . The set $\partial_f G := \overline{G}_f \smallsetminus G$ in \overline{G}_f is called **Floyd boundary** of G.

Remark (W. Floyd)

The completion \overline{G}_f is a compact metric space, on which G acts by (bilipschitz) homeomorphisms.

Examples of trivial Floyd boundary: $\sharp \partial_f G \leq 2$.

- 1 Finite groups: $\# \partial_f G = 0.$ $+ \infty$ $+ \cdots$ $+ \infty$
- **2** \mathbb{Z}^n for $n \ge 2$: $\sharp \partial_f G = 1$, but for \mathbb{Z} : $\sharp \partial_f G = 2$.
- **3** Product of two infinite groups: $\sharp \partial_f G = 1$.
- 4 Any amenable group.
- **5** Mapping class groups with closed orientable surfaces of genus ≥ 2 .

In the remainder of this talk, we only consider Floyd boundary $\partial_f G = \partial_\lambda G$ defined using scaling function $f(n) = \lambda^n$.

Gromov hyperbolic spaces

- 1 Let (X, d) be a geodesic metric space.
- **2** For given $\delta > 0$, a geodesic triangle is called δ -**thin**, if any side is contained in a δ -neighborhood of the other two sides.

3 Then X is called δ -hyperbolic if every geodesic triangle is δ -thin.

Hyperbolic groups

Definition

A finitely generated group G is called **hyperbolic** if any Cayley graph is δ -hyperbolic for some $\delta > 0$. Equivalently, if G acts properly and co-compactly on a proper δ -hyperbolic space.

Examples

- Finite groups,
- Pree groups,
- closed surface groups,
- ④ Fundamental groups of compact negatively curved manifolds.

Hyperbolic groups

Definition

A finitely generated group G is called **hyperbolic** if any Cayley graph is δ -hyperbolic for some $\delta > 0$. Equivalently, if G acts properly and co-compactly on a proper δ -hyperbolic space.

Examples

- Finite groups,
- 2 Free groups, 3 Tree
- \odot closed surface groups, $\Im H^2$
- Fundamental groups of compact negatively curved manifolds.

What is ... a relatively hyperbolic group

• The fundamental group of hyperbolic manifolds with finite volume

Relatively hyperbolic groups

A finitely generated group G is **relatively hyperbolic** if G acts properly on a proper hyperbolic space X and there exists a G-invariant family of **horoballs** \mathbb{B} such that the action on $X \setminus \bigcup \{B \in \mathbb{B}\}$ is co-compact.

- 1 The stabilizers of horoballs are called maximal parabolic subgroups.
- 2 The Gromov boundary of X is called **Bowditch boundary** of the relatively hyperbolic group G.

Examples

- Hyperbolic groups
- Infinitely ended groups: free product amalgamation of any two groups over finite subgroups, or HNN extension over finite subgroups [Stallings 1968].
- Fundamental groups of any finite volume Riemannian manifolds with negatively pinched curvature.

Relatively hyperbolic groups

A finitely generated group G is **relatively hyperbolic** if G acts properly on a proper hyperbolic space X and there exists a G-invariant family of **horoballs** \mathbb{B} such that the action on $X \setminus \bigcup \{B \in \mathbb{B}\}$ is co-compact.

- **1** The stabilizers of horoballs are called **maximal parabolic subgroups**.
- 2 The Gromov boundary of X is called **Bowditch boundary** of the relatively hyperbolic group G.

Examples

Hyperbolic groups

H * K

- Infinitely ended groups: free product amalgamation of any two groups over finite subgroups, or HNN extension over finite subgroups [Stallings 1968].
- S Fundamental groups of any finite volume Riemannian manifolds with negatively pinched curvature.

Boundary comparison: Floyd boundary covers

- Gromov boundary of hyperbolic groups.
- 2 Ends boundary of groups introduced by Freudenthal.
- 3 Limits set of geometrically finite Kleinian groups: [Floyd 1980]

Theorem (Floyd, 1980; Gerasimov, Potyagailo-Gerasimov 2012)

Let G be a relatively hyperbolic group with Bowditch boundary ΛG . Then for any $\lambda \in [\lambda_0, 1)$, there exists a continuous and surjective map

$$(\partial_{\lambda}G, \rho_{\lambda}) \rightarrow (\Lambda G = \{\text{conical point}\} \bigcup \{\text{parabolic points}\}, \bar{\rho}_{\lambda})$$

such that

- **1** The preimage of a conical point in NG consists of a single point.
- 2 The preimage of each parabolic point is the same as the limit set of the corresponding parabolic subgroup.

Boundary comparison: Floyd boundary covers

- 1 Gromov boundary of hyperbolic groups.
- 2 Ends boundary of groups introduced by Freudenthal.
- 3 Limits set of geometrically finite Kleinian groups: [Floyd 1980]

Theorem (Floyd, 1980; Gerasimov, Potyagailo-Gerasimov 2012) Let G be a relatively hyperbolic group with Bowditch boundary ΛG . Then for any $\lambda \in [\lambda_0, 1)$, there exists a continuous and surjective map

$$(\partial_{\lambda}G, \rho_{\lambda}) \rightarrow (\Lambda G = \{\text{conical point}\} \bigcup \{\text{parabolic points}\}, \bar{\rho}_{\lambda})$$

such that

- The preimage of a conical point in NG consists of a single point.
- 2 The preimage of each parabolic point is the same as the limit set of the corresponding parabolic subgroup.

Hausdorff dimension of Floyd boundary

Define growth rate:

$$\delta_G \coloneqq \limsup_{n \to \infty} \frac{\log \# \{g \in G : d_S(o, go) \le n\}}{n}$$

The following result was conjectured by M. Bourdon.

Theorem (Potyagailo-Y., 2019)

Let G be a relatively hyperbolic group with a finite generating set S. There exists a constant $0 < \lambda_0 < 1$ such that

$$\operatorname{Hdim}_{\rho_{\lambda}}(\partial_{\lambda}G) = \operatorname{Hdim}_{\bar{\rho}_{\lambda}}(\Lambda G) = -\frac{\delta_{G}}{\log \lambda}$$

for any $\lambda \in [\lambda_0, 1)$, where the Bowditch boundary ΛG is equipped with shortcut metric $\bar{\rho}_{\lambda}$ induced by Floyd metric ρ_{λ} .

Probabilistic setup: (branching) random walks on groups

- **1** Let μ be a symmetric probability measure whose support generates G.
- 2 The position of the μ-random walk at the time n is a random product ω_n of n independent μ-distributed elements (or steps) s_i for 1 ≤ i ≤ n:

$$\omega_n = \omega_0 \cdot s_1 \cdots s_n.$$

with the law $\mathbf{P}(\omega_n = y, \omega_0 = x) = \mu^{*n}(x^{-1}y)$, the probability of visiting *y* starting from *x* in *n*-steps.

3 The spectral radius $R_{\mu} := \limsup_{n \to \infty} \mu^{*n} (x^{-1}y)^{1/n}$ for any $x, y \in G$.

Problem (Dirichlet problem)

Describe all bounded/positive μ -harmonic functions $h: G \to \mathbb{R}$ on a given group G:

$$h(x) = \sum_{s \in G} \mu(s) h(xs)$$

Via Martin-Poisson representation formula, it is equivalent to determine the Poisson/Martin boundary of μ -random walks.

Probabilistic setup: (branching) random walks on groups

Let μ be a symmetric probability measure whose support generates G.
 The position of the μ-random walk at the time n is a random product ω_n of n independent μ-distributed elements (or steps) s_i for 1 ≤ i ≤ n:

$$\omega_n = \omega_0 \cdot s_1 \cdots s_n.$$

with the law $\mathbf{P}(\omega_n = y, \omega_0 = x) = \mu^{*n}(x^{-1}y)$, the probability of visiting *y* starting from *x* in *n*-steps.

3 The spectral radius $R_{\mu} := \limsup_{n \to \infty} \mu^{*n} (x^{-1}y)^{1/n}$ for any $x, y \in G$.

Problem (Dirichlet problem)

Describe all bounded/positive μ -harmonic functions $h: G \to \mathbb{R}$ on a given group G:

$$h(x) = \sum_{s \in G} \mu(s) h(xs)$$

Via Martin-Poisson representation formula, it is equivalent to determine the Poisson/Martin boundary of μ -random walks.

Probabilistic setup: (branching) random walks on groups

Let μ be a symmetric probability measure whose support generates G.
 The position of the μ-random walk at the time n is a random product ω_n of n independent μ-distributed elements (or steps) s_i for 1 ≤ i ≤ n:

$$\omega_n = \omega_0 \cdot s_1 \cdots s_n.$$

with the law $\mathbf{P}(\omega_n = y, \omega_0 = x) = \mu^{*n}(x^{-1}y)$, the probability of visiting y starting from x in *n*-steps.

3 The spectral radius $R_{\mu} := \limsup_{n \to \infty} \mu^{*n} (x^{-1}y)^{1/n}$ for any $x, y \in G$.

Problem (Dirichlet problem)

Describe all bounded/positive μ -harmonic functions $h : G \to \mathbb{R}$ on a given group G:

$$h(x) = \sum_{s \in G} \mu(s) h(xs)$$

Via Martin-Poisson representation formula, it is equivalent to determine the Poisson/Martin boundary of μ -random walks.

Branching random walks

Fix an offspring distribution ν on $\mathbb{N}_{\geq 0}$ with mean $r = \sum_{n \geq 0} n\nu(n) > 0$.

Place a particle at the location $x \in \mathscr{G}(G, S)$ at the time 0.

- **1** It splits into a ν -random set of particles with offspring mean r.
- 2 According to the step law µ, each particle steps independently onto a new location y ∈ 𝒢(G, S) and repeat the step (1) for each particle.

Dichotomy: recurrent/transient BRW

- $r > R_{\mu}^{-1} \iff$ recurrent BRW: the particles return, with positive probability, to the starting location infinitely often.
- r ≤ R⁻¹_μ ⇐⇒ transient BRW: the particles eventually leave every finite locations. Equivalently, if the r-Green function is finite:

$$G_r(x,y) = \sum_{n \ge 0} \mathbf{P}(\omega_n = y, \omega_0 = x) r^n$$

which is the expected number of particles visiting y from x.

Branching random walks

Fix an offspring distribution ν on $\mathbb{N}_{\geq 0}$ with mean $r = \sum_{n \geq 0} n\nu(n) > 0$.

Place a particle at the location $x \in \mathscr{G}(G, S)$ at the time 0.

- **1** It splits into a ν -random set of particles with offspring mean r.
- 2 According to the step law µ, each particle steps independently onto a new location y ∈ 𝒢(G, S) and repeat the step (1) for each particle.

Dichotomy: recurrent/transient BRW

- $r > R_{\mu}^{-1} \iff$ recurrent BRW: the particles return, with positive probability, to the starting location infinitely often.
- r ≤ R⁻¹_μ ⇐⇒ transient BRW: the particles eventually leave every finite locations. Equivalently, if the r-Green function is finite:

$$G_r(x,y) = \sum_{n\geq 0} \mathbf{P}(\omega_n = y, \omega_0 = x)r^n$$

which is the expected number of particles visiting y from x.

Martin boundary = Buseman boundary of Green metric 1 Note that $G_r(x,y) = F_r(x,y)G_r(y,y) = F_r(x,y)G_r(e,e)$ where $F_r(x,y) = \sum_{n\geq 1} \mathbf{P}(\omega_n = y, \omega_{0\leq i < n} \neq y, \omega_0 = x)r^n$

is the expected number of particles first visiting y from x. Define the **Green metric**:

$$d_G(x,y) = -\log \frac{G_r(x,y)}{G_r(e,e)} = -\log F_r(x,y)$$

3 We inject all the elements y ∈ G into the set of normalized Green functions (=1-Lipschitz functions):

$$x \in G \quad \mapsto \quad b_y(x) \coloneqq d_G(x, y) - d_G(e, y) = e^{G_r(e, y)/G_r(x, y)}$$

The closure \overline{G}_{μ} of $\{b_{y}(x) : y \in G\}$ in $\mathcal{C}(G, \mathbb{R})$ gives a compactification of G, so that $\partial_{\mu}G := \overline{G}_{\mu} \setminus G$ is called *r*-**Martin boundary**.

Martin boundary = Buseman boundary of Green metric 1 Note that $G_r(x,y) = F_r(x,y)G_r(y,y) = F_r(x,y)G_r(e,e)$ where $F_r(x,y) = \sum_{n\geq 1} \mathbf{P}(\omega_n = y, \omega_{0\leq i < n} \neq y, \omega_0 = x)r^n$

is the expected number of particles first visiting y from x.2 Define the Green metric:

$$d_G(x,y) = -\log \frac{G_r(x,y)}{G_r(e,e)} = -\log F_r(x,y)$$

Solution We inject all the elements y ∈ G into the set of normalized Green functions (=1-Lipschitz functions):

$$x \in G \quad \mapsto \quad b_y(x) \coloneqq d_G(x, y) - d_G(e, y) = e^{G_r(e, y)/G_r(x, y)}$$

The closure \overline{G}_{μ} of $\{b_{y}(x) : y \in G\}$ in $\mathcal{C}(G, \mathbb{R})$ gives a compactification of G, so that $\partial_{\mu}G := \overline{G}_{\mu} \setminus G$ is called *r*-**Martin boundary**.

Martin boundary = Buseman boundary of Green metric 1 Note that $G_r(x,y) = F_r(x,y)G_r(y,y) = F_r(x,y)G_r(e,e)$ where $F_r(x,y) = \sum_{n \ge 0} \mathbf{P}(\omega_n = y, \omega_{0 \le i < n} \ne y, \omega_0 = x)r^n$

is the expected number of particles first visiting y from x.2 Define the Green metric:

$$d_G(x,y) = -\log \frac{G_r(x,y)}{G_r(e,e)} = -\log F_r(x,y)$$

3 We inject all the elements y ∈ G into the set of normalized Green functions (=1-Lipschitz functions):

$$x \in G \quad \mapsto \quad b_y(x) \coloneqq d_G(x, y) - d_G(e, y) = e^{G_r(e, y)/G_r(x, y)}$$

The closure \overline{G}_{μ} of $\{b_{y}(x) : y \in G\}$ in $\mathcal{C}(G, \mathbb{R})$ gives a compactification of G, so that $\partial_{\mu}G := \overline{G}_{\mu} \setminus G$ is called *r*-**Martin boundary**.

Martin boundary covers Floyd boundary

Theorem (Gekhtman-Gerasimov-Potyagailo-Y, 2021)

Let μ be a finitely supported symmetric random walk on a finitely generated group G. Then for any $1 \le r < R_{\mu}$ the identification $G \rightarrow G$ extends to a continuous surjective map

$$\partial_{\mu}G \to \partial_f G.$$

Moreover, the preimage of each conical point in $\partial_f G$ is a single point.

Past and further works:

- Martin boundary of virtually abelian groups [Ney-Spitzer, 1968]; Martin boundary for hyperbolic groups [Ancona, 1988, Gouezel-Lalley 2013, Gouezel 2014]
- Martin boundary for finite volume hyperbolic manifolds groups [Dussaule-Gekhtman-Gerasimov-Potyagailo, 2021]; Stability of Martin boundary at the spectral radius [Dussaule-Gekhtman 2021]

Martin boundary covers Floyd boundary

Theorem (Gekhtman-Gerasimov-Potyagailo-Y, 2021)

Let μ be a finitely supported symmetric random walk on a finitely generated group G. Then for any $1 \le r < R_{\mu}^{-1}$ the identification $G \to G$ extends to a continuous surjective map

$$\partial_{\mu}G \to \partial_f G.$$

Moreover, the preimage of each conical point in $\partial_f G$ is a single point.

Past and further works:

- Martin boundary of virtually abelian groups [Ney-Spitzer, 1968]; Martin boundary for hyperbolic groups [Ancona, 1988, Gouezel-Lalley 2013, Gouezel 2014]
- 2 Martin boundary for finite volume hyperbolic manifolds groups [Dussaule-Gekhtman-Gerasimov-Potyagailo, 2021]; Stability of Martin boundary at the spectral radius [Dussaule-Gekhtman 2021]

Key Tool: Relative Ancona Inequality

Lemma (GGPY 2021)

Let $r < R_{\mu}^{-1}$. There exists a decreasing function $\mathcal{A} : \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ with the following property. Let $x, y, z \in G$ such that $\rho_y(x, z) \ge \epsilon > 0$. Then

$$A(\epsilon) \cdot G_r(x,y)G_r(y,z) \leq G_r(x,z)G_r(e,e) \leq G_r(x,y)G_r(y,z).$$

Past and further works

- If G is a hyperbolic group, then ρ_y(x, z) ≥ ε is uniformly bounded below for any triple points x, y, z on a geodesic. This gives the so-called Ancona inequality.
- Relative Ancona inequality extended up to the spectral radius: [Dussaule-Gekhtman, 2021]
- Local limit theorems for (relatively) hyperbolic groups [Gouezel 2014; Dussaule 2022]

Key Tool: Relative Ancona Inequality

Lemma (GGPY 2021)

Let $r < R_{\mu}^{-1}$. There exists a decreasing function $\mathcal{A} : \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ with the following property. Let $x, y, z \in G$ such that $\rho_y(x, z) \ge \epsilon > 0$. Then

$$A(\epsilon) \cdot G_r(x,y)G_r(y,z) \leq G_r(x,z)G_r(e,e) \leq G_r(x,y)G_r(y,z).$$

Past and further works

- If G is a hyperbolic group, then ρ_y(x, z) ≥ ε is uniformly bounded below for any triple points x, y, z on a geodesic. This gives the so-called Ancona inequality.
- Relative Ancona inequality extended up to the spectral radius: [Dussaule-Gekhtman, 2021]
- Local limit theorems for (relatively) hyperbolic groups [Gouezel 2014; Dussaule 2022]

The trace \mathcal{P} of a BRW consists of the locations that the particles visited.

- If BRW is recurrent, the trace is the whole graph.
- ② If BRW is transient, then G_r(e, x) = ∑_{n≥0} P(ω_n = x, ω₀ = e)rⁿ is finite and consider the volume of Green function over spheres

$$H_r(n) \coloneqq \sum_{x \in S_n} G_r(e, x)$$

whose growth rate is defined as

$$\omega(r) \coloneqq \limsup_{n \to \infty} \frac{\log H_r(n)}{n}$$

Problem (Limit behaviour of the trace)

- The asymptotic behaviour of the trace P_n := P ∩ S_n and the volume growth H_r(n);
- The Hausdorff dimension of the limit set $\Lambda(r)$ of the trace of BRW.

The trace \mathcal{P} of a BRW consists of the locations that the particles visited.

- **1** If BRW is recurrent, the trace is the whole graph.
- ② If BRW is transient, then G_r(e,x) = ∑_{n≥0} P(ω_n = x, ω₀ = e)rⁿ is finite and consider the volume of Green function over spheres

$$H_r(n) \coloneqq \sum_{x \in S_n} G_r(e, x)$$

whose growth rate is defined as

$$\omega(r) \coloneqq \limsup_{n \to \infty} \frac{\log H_r(n)}{n}$$

Problem (Limit behaviour of the trace)

- The asymptotic behaviour of the trace P_n := P ∩ S_n and the volume growth H_r(n);
- The Hausdorff dimension of the limit set $\Lambda(r)$ of the trace of BRW.

The trace \mathcal{P} of a BRW consists of the locations that the particles visited.

- **1** If BRW is recurrent, the trace is the whole graph.
- ② If BRW is transient, then G_r(e,x) = ∑_{n≥0} P(ω_n = x, ω₀ = e)rⁿ is finite and consider the volume of Green function over spheres

$$H_r(n) \coloneqq \sum_{x \in S_n} G_r(e, x)$$

whose growth rate is defined as

$$\omega(r) \coloneqq \limsup_{n \to \infty} \frac{\log H_r(n)}{n}$$

Problem (Limit behaviour of the trace)

- The asymptotic behaviour of the trace P_n := P ∩ S_n and the volume growth H_r(n);
- The Hausdorff dimension of the limit set $\Lambda(r)$ of the trace of BRW.

Volume growth of BRW trace

Consider a BRW on a relatively hyperbolic group *G* with underlying symmetric finitely supported μ -random walk and with offspring mean $1 \le r \le R_{\mu}^{-1}$.

Recall that

$$\delta_G := \limsup_{n \to \infty} \frac{\log \# \{g \in G : d_S(o, go) \le n\}}{n}$$

Theorem (Dussaule-Wang-Y. 2022)

1 The function

 $r \to \omega(r)$

is strictly increasing in $[1, R_{\mu}^{-1}]$, and continuous in $[1, R_{\mu}^{-1})$ and $0 < \omega(r) \le \frac{\delta_G}{2}$ for r > 1.

Almost surely,

$$\omega(r) = \limsup_{n \to \infty} \frac{\log |\mathcal{P} \cap S_n|}{n}$$

Volume growth of BRW trace

Consider a BRW on a relatively hyperbolic group *G* with underlying symmetric finitely supported μ -random walk and with offspring mean $1 \le r \le R_{\mu}^{-1}$. Recall that

$$\delta_G := \limsup_{n \to \infty} \frac{\log \# \{g \in G : d_S(o, go) \le n\}}{n} = C e^{S_G n} + sun$$

Theorem (Dussaule-Wang-Y. 2022)

1 The function

 $r \rightarrow \omega(r)$

is strictly increasing in $[1, R_{\mu}^{-1}]$, and continuous in $[1, R_{\mu}^{-1})$ and $0 < \omega(r) \le \frac{\delta_G}{2}$ for r > 1.

Almost surely,

$$\omega(r) = \limsup_{n \to \infty} \frac{\log |\mathcal{P} \cap S_n|}{n}$$

Limit set for transient branching random walks

Theorem (DWY 2022)

Let $1 \le r \le R_{\mu}^{-1}$. Let $\Lambda(r)$ denote the limit set of BRW trace in Bowditch boundary with shortcut metric $\bar{\rho}_{\lambda}$. Then almost surely,

$$\operatorname{Hdim}_{\bar{\rho}_{\lambda}}(\Lambda(r)) = \frac{\omega(r)}{-\log \lambda} \leq \frac{1}{2} \operatorname{Hdim}_{\bar{\rho}_{\lambda}}(\Lambda G) = \frac{\delta_{G}}{-2\log \lambda}$$

Remark

- This generalizes the work [SWX] of V. Sidoravicius, Longmin Wang, and Kainan Xiang on hyperbolic groups, and resolves their conjecture.
- ② The following asymptotic behaviour of $\omega(r)$ was obtained:

$$e^{\omega(R_{\mu}^{-1})}-e^{\omega(r)}\sim C\sqrt{R_{\mu}^{-1}-r},$$
 as $r
ightarrow R_{\mu}^{-1}$

for a constant C, in the class of free groups by Hueter and Lalley, hyperbolic groups by [SWX], free products of groups by Candellero, Gilch and Muller.

Limit set for transient branching random walks

Theorem (DWY 2022)

Let $1 \le r \le R_{\mu}^{-1}$. Let $\Lambda(r)$ denote the limit set of BRW trace in Bowditch boundary with shortcut metric $\bar{\rho}_{\lambda}$. Then almost surely,

$$\operatorname{Hdim}_{\bar{\rho}_{\lambda}}(\Lambda(r)) = \frac{\omega(r)}{-\log \lambda} \leq \frac{1}{2} \operatorname{Hdim}_{\bar{\rho}_{\lambda}}(\Lambda G) = \frac{\delta_{G}}{-2\log \lambda}$$

Remark

- This generalizes the work [SWX] of V. Sidoravicius, Longmin Wang, and Kainan Xiang on hyperbolic groups, and resolves their conjecture.
- **2** The following asymptotic behaviour of $\omega(r)$ was obtained:

$$e^{\omega(R_{\mu}^{-1})}-e^{\omega(r)}\sim C\sqrt{R_{\mu}^{-1}-r},$$
 as $r
ightarrow R_{\mu}^{-1}$

for a constant C, in the class of free groups by Hueter and Lalley, hyperbolic groups by [SWX], free products of groups by Candellero, Gilch and Muller.

Upper bound on Hausdorff dimension

Recall that the trace \mathcal{P} of BRW consists of locations that the particles of BRW visited, and $\Lambda(r)$ is the limit set of the trace at Bowditch boundary.

Theorem (D-W-Y. 2022)

There exists a finite number $\kappa > 0$ such that almost surely, for every conical point $\xi \in \Lambda(r)$,

$$\limsup_{|x|\to\infty}\frac{d(x,\mathcal{P})}{\log|x|}\leq\kappa$$

where x is taken over the set of transition points on the geodesic $[o, \xi]$.

Recall that, almost surely, we have

$$\omega(r) = \limsup_{n \to \infty} \frac{\log |\mathcal{P} \cap S_n|}{n}.$$

By a standard argument, we can cover the limit set $\Lambda(r)$ by shadows around the transition points, so $\operatorname{Hdim}_{\bar{\rho}_{\lambda}}(\Lambda(r)) \leq \frac{\omega(r)}{-\log \lambda}$.

Upper bound on Hausdorff dimension

Recall that the trace \mathcal{P} of BRW consists of locations that the particles of BRW visited, and $\Lambda(r)$ is the limit set of the trace at Bowditch boundary.

Theorem (D-W-Y. 2022)

There exists a finite number $\kappa > 0$ such that almost surely, for every conical point $\xi \in \Lambda(r)$,

$$\limsup_{|x|\to\infty}\frac{d(x,\mathcal{P})}{\log|x|}\leq\kappa$$

where x is taken over the set of transition points on the geodesic $[o, \xi]$.

Recall that, almost surely, we have

$$\omega(r) = \limsup_{n \to \infty} \frac{\log |\mathcal{P} \cap S_n|}{n}$$

By a standard argument, we can cover the limit set $\Lambda(r)$ by shadows around the transition points, so $\operatorname{Hdim}_{\bar{\rho}_{\lambda}}(\Lambda(r)) \leq \frac{\omega(r)}{-\log \lambda}$.

Upper bound on Hausdorff dimension

Recall that the trace \mathcal{P} of BRW consists of locations that the particles of BRW visited, and $\Lambda(r)$ is the limit set of the trace at Bowditch boundary.

Theorem (D-W-Y. 2022)

There exists a finite number $\kappa > 0$ such that almost surely, for every conical point $\xi \in \Lambda(r)$,

$$\limsup_{|x|\to\infty}\frac{d(x,\mathcal{P})}{\log|x|}\leq\kappa$$

where x is taken over the set of transition points on the geodesic $[o, \xi]$.

Recall that, almost surely, we have

$$\omega(r) = \limsup_{n \to \infty} \frac{\log |\mathcal{P} \cap S_n|}{n}.$$

By a standard argument, we can cover the limit set $\Lambda(r)$ by shadows around the transition points, so $\operatorname{Hdim}_{\bar{\rho}_{\lambda}}(\Lambda(r)) \leq \frac{\omega(r)}{-\log \lambda}$.

Thank you for your attention!