Branching random walks on relatively hyperbolic groups
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Geometric setup: Cayley graph and word metric

Let G be a group generated by a finite set S with 1¢ S =571,
The Cayley graph ¢¥(G,S) is a graph defined as follows.

@ Vertex set V := G,

® Two vertices g < g’ iff g/ =g -5 for some s€ S.
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which is equipped with combinatorial metric called word metric ds.
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Fix a scaling function f : N - R,q (eg. f(n) = A" or f(n) =n=2)

® anO f(n) < 0o.

. f(n+1)
e Vn20:a< ) <y

Construction of Floyd boundary: fix a basepoint 0 € 4(G, S)

@ The unit length of each edge e in ¥(G,S) is rescaled to be the Floyd
length /7(e) := f(n), where n=ds(o,e) is the word distance from
edge e to o. /’30“]“ qv) = loo(’(‘ 9)

® Floyd metric p,(x,y) is the infimum of Floyd lengths of all possible
paths between x and y.

© Let Ef_be the Cauchy completion of G with respect to po. The set
0rG := G¢ N G in Gy is called Floyd boundary of G.

Remark (W. Floyd)

The completion Gf is a compact metric space, on which G acts by
(bilipschitz) homeomorphisms.
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Examples of trivial Floyd boundary: §0;G < 2.

© Finite groups: §0rG = 0.

® Z" for n>2: §0¢G =1, but for Z: §0rG = 2.
© Product of two infinite groups: §0rG = 1.

® Any amenable group.

® Mapping class groups with closed orientable surfaces of genus > 2.
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In the remainder of this talk, we only consider Floyd boundary 0¢G = 0, G

defined using scaling function f(n) = A".
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Gromov hyperbolic spaces

@ Let (X, d) be a geodesic metric space.

® For given § > 0, a geodesic triangle is called d-thin, if any side is
contained in a §-neighborhood of the other two sides.
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©® Then X is called §-hyperbolic if every geodesic triangle is d-thin.
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Hyperbolic groups

Definition

A finitely generated group G is called hyperbolic if any Cayley graph is
d-hyperbolic for some 6 > 0. Equivalently, if G acts properly and
co-compactly on a proper d-hyperbolic space.
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Hyperbolic groups

Definition

A finitely generated group G is called hyperbolic if any Cayley graph is
d-hyperbolic for some 6 > 0. Equivalently, if G acts properly and
co-compactly on a proper d-hyperbolic space.

Examples
@ Finite groups,
® Free groups, 4\ Treq
© closed surface groups, 7 |H7’

® Fundamental groups of compact negatively curved manifolds.
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What is ... a relatively hyperbolic group

® The fundamental group of hyperbolic manifolds with finite volume
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Relatively hyperbolic groups

A finitely generated group G is relatively hyperbolic if G acts properly on
a proper hyperbolic space X and there exists a G-invariant family of
horoballs B such that the action on X \ u{B € B} is co-compact.

@ The stabilizers of horoballs are called maximal parabolic subgroups.

® The Gromov boundary of X is called Bowditch boundary of the
relatively hyperbolic group G.
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Relatively hyperbolic groups

A finitely generated group G is relatively hyperbolic if G acts properly on
a proper hyperbolic space X and there exists a G-invariant family of
horoballs B such that the action on X \ u{B € B} is co-compact.

@ The stabilizers of horoballs are called maximal parabolic subgroups.
® The Gromov boundary of X is called Bowditch boundary of the
relatively hyperbolic group G.

Examples

@ Hyperbolic groups H % K

® Infinitely ended groups: free product amalgamation of any two groups

over finite subgroups, or HNN extension over finite subgroups
[Stallings 1968].

©® Fundamental groups of any finite volume Riemannian manifolds with
negatively pinched curvature.
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Boundary comparison: Floyd boundary covers

@ Gromov boundary of hyperbolic groups. 4

® Ends boundary of groups introduced by Freudenthal.
© Limits set of geometrically finite Kleinian groups: [Floyd 1980]
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Boundary comparison: Floyd boundary covers

@ Gromov boundary of hyperbolic groups.
® Ends boundary of groups introduced by Freudenthal.
© Limits set of geometrically finite Kleinian groups: [Floyd 1980]

Theorem (Floyd, 1980; Gerasimov, Potyagailo-Gerasimov 2012)

Let G be a relatively hyperbolic group with Bowditch boundary AG. Then
for any A € [X\g, 1), there exists a continuous and surjective map

(901G, pr) = (NG = {conical point}| J{parabolic points}, py)

such that
@ The preimage of a conical point in NG consists of a single point.

® The preimage of each parabolic point is the same as the limit set of
the corresponding parabolic subgroup.
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Hausdorff dimension of Floyd boundary

Define growth rate:

dg = limsup log j{g € G : ds(o,g0) < n}

n— o0 n

The following result was conjectured by M. Bourdon.
Theorem (Potyagailo-Y., 2019)

Let G be a relatively hyperbolic group with a finite generating set S.
There exists a constant 0 < A\g < 1 such that

Hdim,, (0 G) = Hdimj, (AG) = ———

for any \ € [\o, 1), where the Bowditch boundary NG is equipped with
shortcut metric py induced by Floyd metric p).
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Probabilistic setup: (branching) random walks on groups

@ Let i be a symmetric probability measure whose support generates G.

2]
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Probabilistic setup: (branching) random walks on groups

@ Let i be a symmetric probability measure whose support generates G.
® The position of the p-random walk at the time n is a random product
wp of nindependent p-distributed elements (or steps) s; for 1 <i < n:

Wnp=Wo"S1""°Sn-

with the law P(w, = y,wo = x) = #*"(x71y), the probability of visiting
y starting from x in n-steps.

© The spectral radius R, := limsup,,_, ., p*"(x1y)/"

for any x,y € G.
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Probabilistic setup: (branching) random walks on groups

@ Let i be a symmetric probability measure whose support generates G.
® The position of the p-random walk at the time n is a random product
wp of nindependent p-distributed elements (or steps) s; for 1 <i < n:

Wnp=Wo"S1""°Sn-

with the law P(w, = y,wo = x) = #*"(x71y), the probability of visiting
y starting from x in n-steps.

© The spectral radius R, := limsup,,_, ., p*"(x1y)/"

for any x,y € G.

Problem (Dirichlet problem)

Describe all bounded/positive pi-harmonic functions h: G - R on a given
group G:
h(x) = ¥ u(s)h(xs)

seG

Via Martin-Poisson representation formula, it is equivalent to determine
the Poisson/Martin boundary of p-random walks.
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Branching random walks

Fix an offspring distribution v on N,y with mean r =Y., nv(n) > 0.
Place a particle at the location x € 4(G,S) at the time 0.
@ It splits into a v-random set of particles with offspring mean r.

® According to the step law p, each particle steps independently onto a
new location y € (G, S) and repeat the step (1) for each particle.
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Branching random walks

Fix an offspring distribution v on N,y with mean r =3, nv(n) >0
Place a particle at the location x € 4(G,S) at the time 0.
@ It splits into a v-random set of particles with offspring mean r.
® According to the step law p, each particle steps independently onto a
new location y € (G, S) and repeat the step (1) for each particle.

Dichotomy: recurrent/transient BRW

° r> R;l <= recurrent BRW: the particles return, with positive
probability, to the starting location infinitely often.

® r< R;l <= transient BRW: the particles eventually leave every finite
locations. Equivalently, if the r—Green function is finite:

Gr(Xay) = ZP(Q},,:)/’(,‘)():X)I’”

n>0

which is the expected number of particles visiting y from x.
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Martin boundary = Buseman boundary of Green metric
® Note that G,(x,y) = F.(x,y)G,(y,y) = F,(x,y)G,(e, e) where

Fr(x,y) = Y, P(wn = y,wocicn # y,wo = X)r"

n>1

is the expected number of particles first visiting y from x.
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Martin boundary = Buseman boundary of Green metric
® Note that G,(x,y) = F.(x,y)G,(y,y) = F,(x,y)G,(e, e) where

Fr(x,y) = Y, P(wn = y,wocicn # y,wo = X)r"

n>1
is the expected number of particles first visiting y from x.
® Define the Green metric:

Gr(x,y) _

_I Fr )
Glee) % (x,¥)

dg(x,y) = —log
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Martin boundary = Buseman boundary of Green metric
® Note that G,(x,y) = F.(x,y)G,(y,y) = F,(x,y)G,(e, e) where

Fr(x,y) = Y P(wn =y, wocicn # y,wo = X)r"

n>[)
is the expected number of particles first visiting y from x.
® Define the Green metric:

Gr(x,y) _

_I Fr )
Glee) % (x,¥)

dg(x,y) = —log

© We inject all the elements y € G into the set of normalized Green
functions (=1-Lipschitz functions):

xeG by(x) = dG(X,y) — dG(E,y) — eGr(e,}/)/Gr(XJ)

The closure G, of {by(x):y € G}inC(G,R) gives a compactification
of G, so that 9,G := G, \ G is called r-Martin boundary.
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Martin boundary covers Floyd boundary

Theorem (Gekhtman-Gerasimov-Potyagailo-Y, 2021)

Let p be a finitely supported symmetric random walk on a finitely
generated group G. Then for any 1 < r < R, the identification G - G
extends to a continuous surjective map

0uG — 05 G.

Moreover, the preimage of each conical point in O G is a single point.
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Martin boundary covers Floyd boundary

Theorem (Gekhtman-Gerasimov-Potyagailo-Y, 2021)

Let i be a finitely supported symmetric ranc{om walk on a finitely
generated group G. Then for any 1 < r < R, the identification G - G
extends to a continuous surjective map

0uG — 05 G.
Moreover, the preimage of each conical point in O G is a single point.

Past and further works:

@ Martin boundary of virtually abelian groups [Ney-Spitzer, 1968];

Martin boundary for hyperbolic groups [Ancona, 1988, Gouezel-Lalley
2013, Gouezel 2014]

® Martin boundary for finite volume hyperbolic manifolds groups
[Dussaule-Gekhtman-Gerasimov-Potyagailo, 2021]; Stability of Martin
boundary at the spectral radius [Dussaule-Gekhtman 2021]
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Key Tool: Relative Ancona Inequality

Lemma (GGPY 2021)

Let r < Rl; 1 There exists a decreasing function A :R.qg — R.q with the
following property. Let x,y,z € G such that p,(x,z) > € >0. Then

[A(9) - Gr(x,9) G (y,2) < Gi(x,2) Gr(e,€) < G/ (x,) Gr(y 2). |
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Key Tool: Relative Ancona Inequality

Lemma (GGPY 2021)

Let r < Rl; 1 There exists a decreasing function A :R.qg — R.q with the
following property. Let x,y,z € G such that p,(x,z) > € >0. Then

[A(9) - Gr(x,9) G (y,2) < Gi(x,2) Gr(e,€) < G/ (x,) Gr(y 2). |

Past and further works

@ If G is a hyperbolic group, then p,(x,z) > € is uniformly bounded

below for any triple points x, y,z on a geodesic. This gives the
so-called Ancona inequality.

® Relative Ancona inequality extended up to the spectral radius:
[Dussaule-Gekhtman, 2021]

©® Local limit theorems for (relatively) hyperbolic groups [Gouezel 2014;
Dussaule 2022]
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The trace P of a BRW consists of the locations that the particles visited.
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The trace P of a BRW consists of the locations that the particles visited.
@ If BRW is recurrent, the trace is the whole graph.

@® If BRW is transient, then G,(e,x) =Y ,50 P(wn = x,wp = €)r" is finite
and consider the volume of Green function over spheres

Hy(n):= > G/(e,x)

xeSp
whose growth rate is defined as
log H
w(r) :=limsup log Hi (n)
n—oo n
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The trace P of a BRW consists of the locations that the particles visited.
@ If BRW is recurrent, the trace is the whole graph.

@® If BRW is transient, then G,(e,x) =Y ,50 P(wn = x,wp = €)r" is finite
and consider the volume of Green function over spheres

Hy(n):= > G/(e,x)

xeS,

whose growth rate is defined as

w(r) :=limsup

n—oo

log H,(n)
n

Problem (Limit behaviour of the trace)

® The asymptotic behaviour of the trace P, :=PnS, and the volume
growth H,(n);

® The Hausdorff dimension of the limit set A(r) of the trace of BRW.
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Volume growth of BRW trace

Consider a BRW on a relatively hyperbolic group G with underlying
symmetric finitely supported p—random walk and with offspring mean
1<r<R*
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Volume growth of BRW trace

Consider a BRW on a relatively hyperbolic group G with underlying
symmetric finitely supported u—random walk and with offspring mean

1<r< R;l.
Recall that

Theorem (Dussaule-Wang-Y. 2022)

® The function

O¢ = limsup log §{g € G : ds(o,g0) < n}
n—oo n
r—w(r)

s
—ce

"
+ 2w)

is strictly increasing in [1, R;l], and continuous in [1, R;l) and

0<w(r)< for r > 1.

® Almost surely,

w(r) =limsup

log [P n S|
—

n—oo
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Limit set for transient branching random walks
Theorem (DWY 2022)

Let 1<r <R Let A(r) denote the limit set of BRW trace in Bowditch
boundary with shortcut metric py. Then almost surely,

. w(r 1. 1)
Hdini, (A(r)) = <000 < iz, (G) = =51~
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Limit set for transient branching random walks
Theorem (DWY 2022)

Let1<r< Rﬁl. Let A(r) denote the limit set of BRW trace in Bowditch
boundary with shortcut metric py. Then almost surely,

. w(r 1. 1)
Hdimg, (A(r)) = <o < 3 Hdimg, (AG) = €

Remark

@ This generalizes the work [SWX] of V. Sidoravicius, Longmin Wang,
and Kainan Xiang on hyperbolic groups, and resolves their conjecture.
@® The following asymptotic behaviour of w(r) was obtained:

e (Ri) _ gu(n) C\/R;l-r asr—> R}

for a constant C, in the class of free groups by Hueter and Lalley,

hyperbolic groups by [SWX], free products of groups by Candellero,
Gilch and Muller.
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Upper bound on Hausdorff dimension

Recall that the trace P of BRW consists of locations that the particles of
BRW visited, and A(r) is the limit set of the trace at Bowditch boundary.
Theorem (D-W-Y. 2022)

There exists a finite number k > 0 such that almost surely, for every
conical point & € N(r),

where x is taken over the set of transition points on the geodesic [o0,£&].
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Upper bound on Hausdorff dimension

Recall that the trace P of BRW consists of locations that the particles of
BRW visited, and A(r) is the limit set of the trace at Bowditch boundary.

Theorem (D-W-Y. 2022)

There exists a finite number k > 0 such that almost surely, for every
conical point & € N(r),

where x is taken over the set of transition points on the geodesic [o0,£&].

Recall that, almost surely, we have

w(r) =limsup M.
n

n—oo
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Upper bound on Hausdorff dimension

Recall that the trace P of BRW consists of locations that the particles of
BRW visited, and A(r) is the limit set of the trace at Bowditch boundary.

Theorem (D-W-Y. 2022)

There exists a finite number k > 0 such that almost surely, for every
conical point & € N(r),

where x is taken over the set of transition points on the geodesic [o0,£&].

Recall that, almost surely, we have

w(r) =limsup M.
n

n—oo

By a standard argument, we can cover the limit set A(r) by shadows

around the transition points, so Hdimp, (A(r)) < _“i(()g/\.
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Thank you for your attention!
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