Counting essential surfaces in 3-manifolds

Nathan M. Dunfield University of Illinois

joint with Stavros Garoufalidis Hyam Rubinstein

Slides posted at: http://dunfield.info/slides/YMSC2022.pdf

Based on: arXiv:2007.10053

Throughout: M^3 is a cpt orient irreducible with every closed $F^2 \subset M$ orient (e.g. $H_2(M; \mathbb{F}_2) = 0$).

Closed conn embedded $F^2 \subset M$ is incompressible when $F \neq S^2$ and $\pi_1 F \rightarrow \pi_1 M$ is injective; if F is also not parallel into ∂M , it is essential.

Goal: Count (closed) essential surfaces in *M*, up to isotopy.

 T^3 : all essential surfaces are tori, infinitely many.

 $|\pi_1 M| < \infty$: no essential surfaces.

[Hatcher-Thurston 1985] 2-bridge knot exterior has no ess. surfaces.

M^3 is atoroidal when there are no ess. tori. For atoroidal M, this is always finite:

 $a_M(g) = \# \{ \text{genus } g \text{ ess. surf, mod iso} \}$

M^3 is atoroidal when there are no ess. tori. For atoroidal M, this is always finite:

 $a_M(g) = \# \{ \text{genus } g \text{ ess. surf, mod iso} \}$

For the exterior *M* of 11*n*34:

а _М
602
168
039
498
564
514
392
38
56 51 89

$$a_M(g) = \# \{ \text{genus } g \text{ ess. surf, mod iso} \}$$

 $b_M(-n) = \# \{ \begin{array}{c} \text{ess. surf with } \chi = -n \\ \text{mod isotopy} \end{array} \}$

For $M = E_{11n34}$, we show

$$b_{M}(-2n) = \frac{2}{3}n^{3} + \frac{9}{4}n^{2} + \frac{7}{3}n + \frac{7+(-1)^{n}}{8}$$

Thm [DGR] For atoroidal *M*³, the generating function

$$\sum_{n=1}^{\infty} b_M(-2n) x^n = \frac{P(x)}{Q(x)}$$

where $P, Q \in \mathbb{Q}[x]$ and Q is a product of cyclotomics.

Algorithm [DGR] Can find *P*, *Q*, and isotopy reps for fixed χ .

Normal surfaces meet each tetrahedra in a standard way:

and correspond to lattice points in a finite polyhedral cone P_T in \mathbb{R}^{7t} where t = #T:

Good: Any essential *F* can be isotoped to be normal. **Bad:** Resulting normal surface is far from unique. weight: wt(F) = $\#(F \cap T^1)$

lw-surface: an essential normal surface that is least weight in its isotopy class.

[Tollefson 90s, Oertel 80s]

Every lw-surface lies on a lw-face $C \subset P_T$, one where **every** lattice point in *C* is a lw-surface. Isotopies between lw-surfaces can be understood.

[Ehrhart 60s] Counts of lattice points in rational polyhedra are quasipolynomial.

Thm [DGR] For atoroidal M^3 , the count $b_M(-2n)$ is quasipolynomial.

Moral: Ess. surf. are lattice points in the space $\mathcal{ML}(M)$ of measured laminations [Hatcher '90s].

Cor [DGR] The number of ess. surfaces of $\chi = -2n$ grows like n^{d-1} where $d = \dim(\mathcal{ML}(M))$.

[Kahn-Markovic 2012] For M^3 closed hyperbolic, the number of **immersed** essential genus g surfaces grows like g^{2g} .

Computed $\mathcal{LW}_T = \bigcup \{ C \text{ is a lw-face} \}$ for 59K manifolds. Some 4K with $\dim(\mathcal{LW}_T) > 1$ giving 88 distinct B_M .

 $\frac{-3x^7 + 3x^6 + 9x^5 - 9x^4 - 9x^3 + 9x^2 + 2x}{(x-1)^4(x+1)^3}$

K15n18579: $B_M(x) = \frac{-2x^6 + 5x^4 - 4x^3 - 15x^2 - 4x}{(x-1)^3(x+1)^3}$

 $B_M(x) = \frac{-x^5 + 3x^4 - 2x^3 + 2x^2 + 6x}{(x+1)(x-1)^4}$

For K13n3838, \mathcal{LW}_T is conn. with 44 maximal faces, all of dim 5, each with 5–9 vertex rays cor. to 48 distinct surfaces of genus 2–5. Here $b_M(-2n)$ is:

$$\frac{7}{12}n^4 + 3n^3 + \frac{14}{3}n^2 + 3n + \frac{7 + (-1)^n}{8}$$

and *a_M(g)* starts 12, 34, 110, 216, 532, 708, 1558, 2018, 3462, 4176, 7314, 7876, 13204, 14256, 20778, 23404, 34820, 34832, 52226,...

What about counting by genus?

 $a_M(g) = \# \{ \text{genus } g \text{ ess. surf, mod iso} \}$

To compute, need to decide which lattice points correspond to connected surfaces.

For the 4,330 manifolds, see 94 distinct patterns for $a_M(g)$.

The sequence a_M does not determine b_M or conversely.

Even for surfaces, counting connected curves only is very subtle [Mirzakhani].

Only results (excluding $a_M(g) = 0$ for all large g):

[Lee] For K13n586, have $a_M(2) = 2$ and $a_M(g) = \phi(g-1)$ for g > 2.

[Basilio] Same for Montesinos knots with four rational tangles.

Conj. 54 of our 88 sequences $a_M(g)$ have Möbius transform that is quasipolynomial.

Asymptotics:
$$\bar{a}_M(g) = \sum_{k \leq g} a_M(k)$$

Conj. Either $a_M(g) = 0$ for all large g or there exists $s \in \mathbb{N}$ such that $\lim_{g\to\infty} \overline{a}_M(g)/g^s$ exists and is positive.

āм 108 s = 5 - 1 107 106 105 104 *s* = 2 10³ 102 10^{1} 100 101 10^{2} q