Counting essential surfaces in 3-manifolds

Nathan M. Dunfield University of Illinois

joint with
Stavros Garoufalidis Hyam Rubinstein

> Slides posted at:
http://dunfield.info/slides/YMSC2022.pdf

Based on: arXiv:2007.10053

Throughout: M^{3} is a cpt orient irreducible with every closed
$F^{2} \subset M$ orient (e.g. $H_{2}\left(M ; \mathbb{F}_{2}\right)=0$).

Closed conn embedded $F^{2} \subset M$ is incompressible when $F \neq S^{2}$ and $\pi_{1} F \rightarrow \pi_{1} M$ is injective; if F is also not parallel into ∂M, it is essential.

Goal: Count (closed) essential surfaces in M, up to isotopy.
T^{3} : all essential surfaces are tori, infinitely many.
$\left|\pi_{1} M\right|<\infty$: no essential surfaces.
[Hatcher-Thurston 1985] 2-bridge knot exterior has no ess. surfaces.
M^{3} is atoroidal when there are no ess. tori. For atoroidal M, this is always finite:
$a_{M}(g)=\#\{$ genus g ess. surf, mod iso $\}$

M^{3} is atoroidal when there are no

 ess. tori. For atoroidal M, this is always finite:$a_{M}(g)=\#\{$ genus g ess. surf, mod iso $\}$

> For the exterior M of $11 n 34$:

g	a_{M}	g	a_{M}	g	a_{M}
1	0	7	87	13	602
2	6	8	208	14	1,168
3	9	9	220	15	1,039
4	24	10	366	16	1,498
5	37	11	386	17	1,564
6	86	12	722	18	2,514
					\ldots
				50	56,892
				100	444,038

$a_{M}(g)=\#\{$ genus g ess. surf, mod iso $\}$
$b_{M}(-n)=\#\left\{\begin{array}{c}\text { ess. surf with } \chi=-n \\ \text { mod isotopy }\end{array}\right\}$
For $M=E_{11 n 34}$, we show
$b_{M}(-2 n)=\frac{2}{3} n^{3}+\frac{9}{4} n^{2}+\frac{7}{3} n+\frac{7+(-1)^{n}}{8}$

Thm [DGR] For atoroidal M^{3}, the generating function

$$
\sum_{n=1}^{\infty} b_{M}(-2 n) x^{n}=\frac{P(x)}{Q(x)}
$$

where $P, Q \in \mathbb{Q}[x]$ and Q is a product of cyclotomics.

Algorithm [DGR] Can find P, Q, and isotopy reps for fixed χ.

Normal surfaces meet each tetrahedra in a standard way:

and correspond to lattice points in a finite polyhedral cone P_{T} in $\mathbb{R}^{7 t}$ where $t=\# T$:

Good: Any essential F can be isotoped to be normal. Bad: Resulting normal surface is far from unique.
weight: $\operatorname{wt}(F)=\#\left(F \cap T^{1}\right)$
Iw-surface: an essential normal surface that is least weight in its isotopy class.
[Tollefson 90s, Oertel 80s] Every Iw-surface lies on a Iw-face $C \subset P_{T}$, one where every lattice point in C is a Iw-surface. Isotopies between Iw-surfaces can be understood.
[Ehrhart 60s] Counts of lattice points in rational polyhedra are quasipolynomial.

Thm [DGR] For atoroidal M^{3}, the count $b_{M}(-2 n)$ is quasipolynomial.

Moral: Ess. surf. are lattice points in the space $\mathcal{M} \mathcal{L}(M)$ of measured laminations [Hatcher '90s].

Cor [DGR] The number of ess. surfaces of $\chi=-2 n$ grows like n^{d-1} where $d=\operatorname{dim}(\mathcal{M} \mathcal{L}(M))$.
[Kahn-Markovic 2012] For M^{3} closed hyperbolic, the number of immersed essential genus g surfaces grows like $g^{2 g}$.

Computed $\mathcal{L W}_{T}=\cup\{C$ is a Iw-face $\}$ for 59 K manifolds. Some 4 K with $\operatorname{dim}\left(\mathcal{L} \mathcal{W}_{T}\right)>1$ giving 88 distinct B_{M}.
$-3 x^{7}+3 x^{6}+9 x^{5}-9 x^{4}-9 x^{3}+9 x^{2}+2 x$

$$
(x-1)^{4}(x+1)^{3}
$$

$$
K 15 n 18579: B_{M}(x)=\frac{-2 x^{6}+5 x^{4}-4 x^{3}-15 x^{2}-4 x}{(x-1)^{3}(x+1)^{3}}
$$

For $K 13 n 3838, \mathcal{L W}_{T}$ is conn. with 44 maximal faces, all of dim 5, each with 5-9 vertex rays cor. to 48 distinct surfaces of genus 2-5. Here $b_{M}(-2 n)$ is:
$\frac{7}{12} n^{4}+3 n^{3}+\frac{14}{3} n^{2}+3 n+\frac{7+(-1)^{n}}{8}$
and $a_{M}(g)$ starts $12,34,110,216$, 532, 708, 1558, 2018, 3462, 4176, 7314, 7876, 13204, 14256, 20778, 23404, 34820, 34832, 52226,...

What about counting by genus?
$a_{M}(g)=\#\{$ genus g ess. surf, mod iso $\}$
To compute, need to decide which lattice points correspond to connected surfaces.

For the 4,330 manifolds, see 94 distinct patterns for $a_{M}(g)$.

The sequence a_{M} does not determine b_{M} or conversely.

Even for surfaces, counting connected curves only is very subtle [Mirzakhani].

Only results (excluding $a_{M}(g)=0$ for all large g):
[Lee] For $K 13 n 586$, have $a_{M}(2)=2$ and $a_{M}(g)=\phi(g-1)$ for $g>2$.
[Basilio] Same for Montesinos knots with four rational tangles.

Conj. 54 of our 88 sequences $a_{M}(g)$ have Möbius transform that is quasipolynomial.

Asymptotics: $\bar{a}_{M}(g)=\sum_{k \leq g} \mathrm{a}_{M}(k)$

Conj. Either $a_{M}(g)=0$ for all large

 g or there exists $s \in \mathbb{N}$ such that $\lim _{g \rightarrow \infty} \bar{a}_{M}(g) / g^{s}$ exists and is positive.

