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Geometric Quantities on Hyperbolic Surfaces

Let Xg ∈Mg be a closed hyperbolic surface of genus g (curvature −1).
By Gauss-Bonnet formula, Area(Xg ) = 4π(g − 1).
There are many interesting geometric quantities to study. For example:

systole, separating systole, diameter,

inradius, total pants length,

eigenvalues, Cheeger constant · · ·
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Systole

Definition

A systole of a hyperbolic surface is a shortest closed geodesic on it.

Remark: `sys(Xg ) = 2×injective radius of Xg .

Systole of Xg can be arbitrarily short, and bounded from above by

`sys(Xg ) ≤ 2 log(4g − 2).
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Separating Systole

Definition

A separating systole of a hyperbolic surface is a shortest simple closed
geodesic which separates the surface into two pieces.

Separating systole of Xg can be arbitrarily short.

Separating systole of Xg can be arbitrarily long.
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Random Hyperbolic Surfaces of Weil-Petersson Model

Let Mg be the moduli space of closed hyperbolic surfaces of genus g . The
Teichmüller space Tg is a universal cover of Mg and Mg = Tg/Modg
where Modg = Homeo+(Sg )/Homeo0(Sg ) is the mapping class group.

A pants decomposition {αi}3g−3i=1 of the surface are 3g − 3 disjoint simple
closed curve that separate the surface into 2g − 2 pants. The
Fenchel-Nielsen coordinate (`αi (X ), ταi (X ))3g−3i=1 gives a coordinate for Tg .
Here `αi (X ) is the length and ταi (X ) is the twist along αi .
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Random Hyperbolic Surfaces of Weil-Petersson Model

The Teichmüller space Tg admits a Modg -invariant Riemannian metric
called the Weil-Petersson metric, and hence gives an induced metric on
the moduli space Mg .

Theorem (Wolpert 1982)

The sympletic form ωWP of Weil-Petersson metric on Tg is given by

ωWP =

3g−3∑
i=1

d`αi ∧ dταi .

The volume form:

d VolWP(X ) :=
1

(3g − 3)!
ωWP ∧ · · · ∧ ωWP =

3g−3∧
i=1

(d`αi ∧ dταi ).
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Random Hyperbolic Surfaces of Weil-Petersson Model

The Weil-Petersson metric on the moduli space Mg is of finite volume.

Theorem (Mirzakhani-Zograf 2015)

There exists a universal constant C > 0 such that

Vol(Mg ) = C
1
√

g
(2g − 3)!(4π2)2g−3

(
1 + O(

1

g
)

)
.

Conjecture: C = 1√
π

.
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Random Hyperbolic Surfaces of Weil-Petersson Model

The Weil-Petersson metric induces a probability measure ProbgWP on Mg .

ProbgWP(A) :=
1

Vol(Mg )

∫
Mg

1A(X ) d VolWP(X ) =
Vol(A)

Vol(Mg )
.

And the expectation is defined by

Eg
WP[f ] :=

1

Vol(Mg )

∫
Mg

f (X ) d VolWP(X ).

Say a property P holds for random hyperbolic surfaces, or equivalently say
P happens with high probability, if

lim
g→∞

ProbgWP(X ∈Mg | P holds for X ) = 1.
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Other models

Random hyperbolic surfaces of Weil-Petersson model was first studied by
Mirzakhani (2013, or her ICM talk 2010). And this is motivated by a
model studied by Brooks and Makover, where they constructed surfaces by
gluing ideal triangles among random 3-regular graphs.

BM model

Gluing pants among random 3-regular graphs

Random covering of a fixed hyperbolic surface

These three models are “discrete”.
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Mirzakhani’s Integration Formula

Let γ be a simple closed curve. Consider the orbit under Modg -action:

Oγ = {h · γ| h ∈ Modg}.

Given F : R≥0 → R, we may define a function F γ on Mg :

F γ(X ) :=
∑
α∈Oγ

F (`α(X )).

Theorem (Mirzakhani 2007)∫
Mg

F γ(X )d VolWP(X ) = Cγ

∫
R≥0

F (t)Vg (γ, t)t dt

where the constant Cγ ∈ (0, 1] only depends on γ.

Remark: In general, Mirzakhani’s integration formula holds for simple
closed multi-curves Γ = (γ1, · · · , γk).
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Geometric Quantities for Random Surfaces

Recall that a systole is a shortest closed geodesic.
Denote `sys(X ) to be the length of a systole of X .

Theorem (Mirzakhani 2013)

There exist universal constants c2 > c1 > 0 and r0 > 0 such that for any
r < r0,

c1 · r2 ≤ ProbgWP (X ∈Mg | `sys(X ) < r) ≤ c2 · r2

as g →∞.

Theorem (Mirzakhani-Petri 2017)

lim
g→∞

Eg
WP[`sys(X )] := lim

g→∞

∫
Mg

`sys(X )dX

Vol(Mg )
= 1.61498....
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Geometric Quantities for Random Surfaces

Let Emb(X ) be the radius of the largest embedded ball in X (also called
the inradius of X ). For any hyperbolic surface Xg ,

Emb(Xg ) < log(4g − 2).

Theorem (Mirzakhani 2013)

lim
g→∞

ProbgWP

(
X ∈Mg

∣∣∣∣ Emb(X ) >
1

6
log g

)
= 1.

Actually she proved that at “most points” on a random hyperbolic surface,
the injective radius > 1

6 log g .
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Geometric Quantities for Random Surfaces

Denote diam(X ) to be the diameter of X . For any hyperbolic surface Xg ,

diam(Xg ) > log(4g − 4).

Theorem (Mirzakhani 2013)

lim
g→∞

ProbgWP (X ∈Mg | diam(X ) < 40 log g) = 1.

this is not a “typical” surface
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Geometric Quantities for Random Surfaces

Theorem (Wu-X. 2022)

For any ε > 0,

lim
g→∞

ProbgWP (X ∈Mg | diam(X ) < (4 + ε) log g) = 1.

Recall that:

lim
g→∞

ProbgWP

(
X ∈Mg

∣∣∣∣ Emb(X ) >
1

6
log g

)
= 1.

Random hyperbolic surfaces should be “crowded” and “fat”.
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Geometric Quantities for Random Surfaces

Reccall that a separating systole is a shortest simple closed geodesic
which separates the surface into two pieces.
Denote `sepsys(X ) to be the length of a separating systole of X .

Theorem (Mirzakhani 2013)

For any ε > 0,

lim
g→∞

ProbgWP

(
X ∈Mg | `sepsys(X ) > (2− ε) log g

)
= 1.

Recall:
c1r2 ≤ ProbgWP (X ∈Mg | `sys(X ) < r) ≤ c2r2.

Separating systole behaves very different from systole.
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Main Results

Reccall that `sepsys(X ) is the length of a separating systole of X (a shortest
simple closed geodesic which separates the surface into two pieces).

Let ω(g) satisfies limg→∞ ω(g) = +∞ and limg→∞
ω(g)

log log g = 0.

Theorem (Nie-Wu-X. 2020)

For any fixed ε > 0, there exists Ag ⊂Mg such that ProbgWP(Ag )→ 1
and for any X ∈ Ag the following conditions hold.

(a). |`sepsys(X )− (2 log g − 4 log log g)| ≤ ω(g);

(b). `sepsys(X ) is achieved by a simple closed geodesic separating X into
S1,1 ∪ Sg−1,1;

(c). There is a half-collar in the Sg−1,1-part of X with width
1
2 log g − (32 + ε) log log g.
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Main Results
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Main Results

Theorem (Parlier-Wu-X. 2020)

lim
g→∞

Eg
WP[`sepsys(X )]

log g

(
:= lim

g→∞

∫
Mg

`sepsys(X )dX

Vol(Mg ) · log g

)
= 2.

Remark: `sepsys(X ) is unbounded over Mg .

Remark: [Mirzakhani 2013] claimed c1 ≤
Eg
WP[`

sep
sys (X )]

log g ≤ c2, but there is a
gap in her paper.
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Other Results

Let ω(g) satisfies limg→∞ ω(g) = +∞ and limg→∞
ω(g)

log log g = 0.

L1(X ): the length of shortest simple
separating multi-geodesic of X .

L1(X ) ≤ `sepsys(X )

L1(X ) ≤ C log g

Theorem (Nie-Wu-X. 2020)

For any fixed ε > 0, there exists Ag ⊂Mg such that ProbgWP(Ag )→ 1
and for any X ∈ Ag the following conditions hold.

(a). |L1(X )− (2 log g − 4 log log g)| ≤ ω(g);

(b). L1(X ) is achieved by either a simple closed geodesic separating X
into S1,1 ∪ Sg−1,1, or three simple closed geodesics separating X into
S0,3 ∪ Sg−2,3;

(c). (1− ε) log g < `nssys(X ) < 2 log g;
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Other Results

Let ω(g) satisfies limg→∞ ω(g) = +∞ and limg→∞
ω(g)

log log g = 0.

`nssys(X ): the length of shortest non-simple closed geodesic of X .

Theorem (Nie-Wu-X. 2020)

For any fixed ε > 0, there exists Ag ⊂Mg such that ProbgWP(Ag )→ 1
and for any X ∈ Ag the following conditions hold.

(a). |L1(X )− (2 log g − 4 log log g)| ≤ ω(g);

(b). L1(X ) is achieved by either a simple closed geodesic separating X
into S1,1 ∪ Sg−1,1, or three simple closed geodesics separating X into
S0,3 ∪ Sg−2,3;

(c). (1− ε) log g < `nssys(X ) < 2 log g;
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Related Result

Delecroix-Goujard-Zograf-Zorich 2021:

For any closed hyperbolic surface X ∈Mg ,

“frequency” of simple separating geodesics

“frequency” of simple non-separating geodesics
∼

√
2

3πg
· 1

4g

as g →∞.
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Proof Sketch

Consider

N1,1(X , L) := #

{
γ ⊂ X

γ is a simple closed geodesic,
`γ(X ) ≤ L, X \ γ ∼= S1,1 ∪ Sg−1,1

}
.

N1,1(X , L) = 0 means each geodesic of such type has length > L.
N1,1(X , L) ≥ 1 means there is a geodesic of such type of length ≤ L.

By Mirzakhani’s Integration Formula,

Eg
WP[N1,1(X , L)] =

1

384π2
L2e

1
2
L 1

g
·
(
1 + O(

1

L
+

1 + L2

g
)
)
.

It is reasonable that L = 2 log g − 4 log log g may be approximate to the
smallest length of such type of geodesics.

Similarly, for separating geodesics of other type, the length may be larger.
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Proof Sketch

Lower bound `sepsys(X ) > 2 log g − 4 log log g − ω(g):

following [Mirzakhani 2013].

ProbgWP (N1,1(X , L) ≥ 1) ≤ Eg
WP[N1,1(X , L)]

� L2e
1
2
L 1

g
→ 0.

N1,1(X , L) = 0 means each geodesic of such type has length > L.
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Proof Sketch

Upper bound `sepsys(X ) < 2 log g − 4 log log g + ω(g):
using Chebyshev’s Inequality

ProbgWP(N = 0) ≤ Var[N]

Eg
WP[N]2

=
Eg
WP[N2]− Eg

WP[N]2

Eg
WP[N]2

.

N1,1(X , L) ≥ 1 means there exists a geodesic of such type of length ≤ L.

Aim: ProbgWP(N1,1(X , L) = 0)→ 0. Eg
WP[N2] is the most complicated

term. Need to consider how two geodesics intersect with each other.
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Proof Sketch

To compute Eg
WP[`sepsys(X )], use

`sepsys(X ) < 2`sys(X ) + 4diam(X ),

diam(X ) ≤ 2

(
`sys(X )

2
+

1

h(X )
· log

(
2π(g − 1)

Area(BH(`sys(X )/2))

))
.
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Thank You!
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