Almost complex manifolds with prescribed Betti numbers

Zhixu Su

University of Washington

October 11, 2022

General Question
Prescribing a sequence of nonnegative integers $b_{0}, b_{1}, \ldots, b_{n}$, does there exist any closed orientable manifold M^{n} that realizes b_{i} as its Betti numbers?

$$
b_{i}=b_{i}\left(M^{n}\right)=\operatorname{dim} H_{i}\left(M^{n} ; \mathbb{Q}\right)
$$

\star We restrict to simply connected closed orientable manifold, $b_{1}=0, b_{0}=b_{n}=1$.

- Poincaré duality $\Longrightarrow b_{i}=b_{n-i}$.
- connecting sum $M^{n} \# S^{k} \times S^{n-k}$ realizes $b_{k}+1, b_{n-k}+1$.
- realization by B-manifold, $B=B S O, B U, B S U, B S p i n, \ldots$

Stable normal bundle

$b_{0}=b_{n}=1$, rational homology sphere
smooth manifolds

- $\operatorname{dim} n=2,3,4$, every simply-connected \mathbb{Q} homology sphere is homeomorphic to S^{n}.
- $\operatorname{dim} n \geq 5, \exists \mathbb{Q}$ homology sphere $\not \approx S^{n}$.
(e.g., $n=5$, Wu manifold $S U(3) / S O(3)$ with $H_{*}=\mathbb{Z}, 0, \mathbb{Z}_{2}, 0,0, \mathbb{Z}$.)
almost complex manifolds
$J: T M \rightarrow$ TM $J^{2}=-I d$
[Borel \& Sarre, 53'] S^{n} admits an almost complex structure of $n=2,6$.
Obstructions: divisibility of Chern number and Hirzebruch signature equation. (work for $S_{\mathbb{Q}}^{n}$)
- $S_{\mathbb{Q}}^{2 k}, k>3$ can not admit almost complex structure.
chen character $\operatorname{ch}\left(t^{*}\right)=n+\frac{C(t)}{(h t)!}$
$\left\langle c h(E),\left[s^{n n}\right]\right\rangle \in \mathbb{Z}$
$\left\langle c h(t),\left[s^{2 n}\right]\right\rangle \in \mathbb{Z},(h-1)!$
$\left.\left.C G(E),\left[s^{n}\right]\right\rangle=x\left(s^{2 n}\right)=2\right\} \Rightarrow(n-1)!/ 2 \Rightarrow n \leq 3, S^{2} \&^{(} S^{6} s^{6}$
- $S_{Q}^{4 k}$ can not admit almost complex structure.
$S^{4 K}$: Pontryagin class $0=P_{1}=-2 C_{2}$ but $C_{2}\left[5^{42}\right]=X=2$ $(-1)^{k_{2}} C_{2}$
or signature eqn $0=\sigma=\left\langle S_{k} P_{k},\left[S^{* k j}\right]\right\rangle=2(-1)^{k} S_{k} \cdot X \neq 0$
"simplest" nontrivial case $b_{0}=b_{n / 2}=b_{n}=1$

well-known smooth examples

In $\operatorname{dim} n=4,8,16$, complex, quaternionic, Cayley(octonionic) projective planes: $\mathbb{C P}^{2}, \mathbb{H P}^{2}, \mathbb{O P}^{2}$.

$$
M^{2 k}=S^{k} \cup_{\phi} D^{2 k}
$$

where $\phi: S^{2 k-1} \rightarrow S^{k}$ has Hopf invariant $h(\phi)=1 .\left(\alpha_{k} \cup \alpha_{k}=h(\phi) \beta_{2 k}\right)$
[Hops Invariant One Theorem (Adams '60)] The only such maps ϕ with Hopf invariant one are the Hopf fibrations $S^{2 k-1} \rightarrow S^{k}$ where $k=1,2,4$ or 8 .
$\Longrightarrow \nexists$ close manifold M^{n} in $\operatorname{dim} n>16$ with $H^{*}\left(M^{n} ; \mathbb{Z}\right)=\mathbb{Z}[\alpha] /\left(\alpha^{3}\right)$.

rational examples in higher dimensions?

Question. In $\operatorname{dim} n>16$, does there exist closed manifold M^{n} with Betti numbers $b_{0}=b_{n / 2}=b_{n}=1$, otherwise $b_{i}=0$?

- intersection form $\Rightarrow \operatorname{dim}$ of such M must be $n=4 k$.

- the rational cohomology ring is $H^{*}\left(M^{4 k} ; \mathbb{Q}\right)=\mathbb{Q}[\alpha] /\left(\alpha^{3}\right), \quad|\alpha|=2 k$.
rational projective planes $\left(b_{0}=b_{n / 2}=b_{n}=1\right)$
A smooth manifold $M^{4 k}$ with $H^{*}(M ; \mathbb{Q})=\mathbb{Q}[\alpha] /\left(\alpha^{3}\right)$ will be called a $\mathbb{Q} P . P$.

Theorem [Su (Thesis) '09, Su '14]

- \exists QP.P. in $\operatorname{dim} n=32$.
- \# QP.P. in $\operatorname{dim} n=4 k$ with k odd, or between $\operatorname{dim} 16<n<32$.

Theorem [Fowler-Su '16]

$\mathbb{Q}[x] /\langle x\rangle^{m}$

- If \exists QP.P. in dim n, n must be $8\left(2^{a}\right)$, or $8\left(2^{a}+2^{b}\right)$ with $a<b$.
- \# QP.P. between $\operatorname{dim} 32<n<128$ or $128<n<256$.

Theorem [Kennard-Su '18]

- \exists QP.P. in dim $16<n \leq 512$ iff $n \in\{32,128,256\}$.
- \# QP.P. between $\operatorname{dim} 512<n<2^{13}$ except five possible exceptions.
- Nonexistence in ∞ many dim of the form 2^{a}.

Kreck and Zagier, communicated '17-'18

With computer program, they can show nonexistence between $\operatorname{dim} 256<n<8\left(10^{4}\right)$ except 13 exceptions. The likelihood of existence besides dim 32, 128, 256 is "slim".
(Non-existence) obstruction from:

1. Hirzebruch signature Theorem. $\left\langle\mathcal{L}_{k}\left(p\left(\tau_{M}\right)\right),[M]\right\rangle=\sigma\left(M^{4 k}\right)$
2. Integrality of the Pontryagin numbers of $4 k$-dim smooth manifold.
(Existence) Sullivan-Barge rational surgery realization theorem:
The above necessary conditions are also sufficient for the realization.

Proof of nonexistence

What are some "obvious" necessary conditions of a realization?
If $M^{4 k}$ is a smooth manifold with $H^{*}\left(M^{4 k} ; \mathbb{Q}\right)=\mathbb{Q}[\alpha] /\left(\alpha^{3}\right)$, The only possibly nontrivial Pontryagin classes:

$$
p_{k / 2} \in H^{2 k}(M ; \mathbb{Q}) \text { and } p_{k} \in H^{4 k}(M ; \mathbb{Q})
$$

The only possible nontrivial Pontryagin numbers are:

$$
\left\langle p_{k / 2}^{2}\left(\tau_{M}\right),[M]\right\rangle=x^{2} \quad \text { and }\left\langle p_{k}\left(\tau_{M}\right),[M]\right\rangle=y, \quad x, y \in \mathbb{Z}
$$

1. The Hirzebruch signature formula:

Example. In dim 8,

$$
\begin{gathered}
\left\langle\mathcal{L}_{k}(p),[M]\right\rangle=s_{\frac{k}{2}, \frac{k}{2}} x^{2}+s_{k} y=1 \\
-\frac{1}{45} x^{2}+\frac{7}{45} y=1
\end{gathered}
$$

Proof of nonexistence (continued)

$$
\left\langle\mathcal{L}_{k}(p),[M]\right\rangle=s_{\frac{k}{2}, \frac{k}{2}} x^{2}+s_{k} y=1
$$

the coefficient

$$
s_{k}=\frac{2^{2 k}\left(2^{2 k-1}-1\right)\left|B_{2 k}\right|}{(2 k)!}, s_{k, k}=\frac{1}{2}\left(s_{k}^{2}-s_{2 k}\right)
$$

$B_{2 k}$ is the even Bernoulli sequence $B_{2}=\frac{1}{6}, B_{4}=-\frac{1}{30}, B_{6}=\frac{1}{42}, \ldots$.

If $n=4 k$ with k odd, the signature equation becomes

$$
s_{k} y=1
$$

by some number theoretic property of the Bernoulli numbers $\Rightarrow 2$-adic order $v_{2}\left(s_{k}\right)>0 \Rightarrow$ no solution \Rightarrow dim must be $n=8 k$.

- $\operatorname{dim} n=24$.

The quadratic residue problem has no solution.
2. Integrality of the Pontryagin numbers of $4 k$-dim smooth manifold.

Hattori-Stong (smooth case): $B_{*}^{S O}=\operatorname{Im}\left(\tau: \Omega_{*}^{S O} / \operatorname{Tor} \rightarrow H_{*}(B S O ; \mathbb{Q})\right)$ consists of classes a that satisfy the integrality relations:

$$
\begin{aligned}
\left\langle p_{I}(\gamma), a\right\rangle & \in \mathbb{Z} \\
\langle p h(K O(B S O)) \cdot \mathcal{L}, a\rangle & \in \mathbb{Z}[1 / 2]
\end{aligned}
$$

which gives all the integrality relations characterizing the Pontryagin numbers of smooth manifolds:

$$
\begin{aligned}
\left\langle p_{I}, \mu\right\rangle & \in \mathbb{Z} \\
\left\langle\mathbb{Z}\left[e_{1}, e_{2}, \ldots\right] \cdot \mathcal{L}(p), \mu\right\rangle & \in \mathbb{Z}[1 / 2]
\end{aligned}
$$

(e_{j} is the j-th elementary symmetric functions of the variables $e^{x_{i}}+e^{-x_{i}}-2$ such that the total Pontryagin class is formally written as $p=\prod_{i}\left(1+x_{i}^{2}\right)$.)
Example. In dim 8, these relations are equivalent to

$$
\left\{\begin{array}{c}
x^{2}, y \in \mathbb{Z} \\
-\frac{1}{45} x^{2}+\frac{7}{45} y \in \mathbb{Z}[1 / 2]
\end{array}\right.
$$

\star In higher dimensions, solution to the signature equation does not necessarily satisfy the Hattori-Stong integrality conditions.

Proof of existence

These necessary conditions are also sufficient for the realization.

Rational surgery realization theorem (Barge, Sullivan '76)

Given a Sullivan minimal model X under the prescribed \mathbb{Q} cohomology ring which is 1 -connected and satisfies Poincaré duality, there exists a $4 k$-dim orientable smooth closed manifold realizing the algebraic data iff There exist $p_{1}, \ldots, p_{k} \in \Pi H^{4 i}(X ; \mathbb{Q})$ and $\mu \in H_{n}(X ; \mathbb{Q})$ that satisfy:
(i). Hirzebruch signature Theorem. $\left\langle\mathcal{L}_{k}(p), \mu\right\rangle=\sigma(X)$
(ii) The intersection form is equivalent to $\oplus\langle \pm 1\rangle$ over \mathbb{Q}.
(iii) Integrality conditions characterizing the Pontryagin numbers of $4 k$-dim smooth manifold.

Example. In dim 8, any integer solution x^{2}, y to the signature equation

$$
-\frac{1}{45} x^{2}+\frac{7}{45} y=1
$$

corresponds to the Pontryagin numbers of a realizing manifold.

Input data:

- $p_{1}, \ldots, p_{k} \in \Pi H^{4 i}(X ; \mathbb{Q})$, i.e., a map $p: X \rightarrow B S O_{0} \simeq \Pi K(\mathbb{Q}, 4 i)$.
- a choice of fundamental class $\mu \in H_{n}(X ; \mathbb{Q})$.

In the degree 1 normal map,

condition (iii) guarantees that there exist a "correct" class in $\pi_{n+m}\left(T \xi^{m}\right)$ to perform Thom-Pontryagin construction, so that the fundamental class of M is mapped to μ.

Question. \exists ? almost complex \mathbb{Q} P.P. besides the rational $\mathbb{C P}^{2}$, ?

Fact. Rational $\mathbb{H}^{2} \mathbb{P}^{2}$ does not admit any almost complex structure.
(Hirzebruch): an 8 -dim almost complex manifold with $b_{2}=0$ must have Euler characteristic divisible by 6. $\left(c_{1} c_{3}+2 c_{4}\right)\left[M^{8}\right] \equiv 0 \bmod 12, c_{4}\left[M^{8}\right]=\chi$.
[Albanese-Milivojević, '18-' 19] The dim of any almost complex manifold with sum of Betti numbers three must be a power of 2. Smooth m fld $n=8\left(2^{a}\right), 8\left(y^{a}+t\right)$ proof. obstruction from signature equation using $p_{k}=2(-1)^{k} c_{2 k}, p_{2 k}=c_{2 k}^{2}+2 c_{4 k}$, and $c_{4 k}[M]=\chi=3$
(Su, announced 18 ') In $\operatorname{dim} n>4$, there does not exist any almost complex QP.P. proof. obstruction from the signature equation and the integrality condition that $\frac{c_{2 k}^{2}\left[M^{8 k}\right]}{[(2 k-1)!]^{2}} \in \mathbb{Z}$.
(Hu Jiahao, arXiv.2108.06067) If M is a closed almost complex manifold with sum of Betti numbers three, then $\operatorname{dim} M=4$ and M is complex cobordant to $\mathbb{C P}^{2}$. proof. obstruction from the signature equation and the integrality of Todd genus.

Rational surgery realization theorem for almost complex manifolds

[Su,arXiv:2204.04800], [Milivojević, thesis, '21]
Let $H^{*}=\bigoplus_{i=0}^{n} H^{i}$ be a 1 -connected \mathbb{Q} Poincaré duality algebra of $\operatorname{dim} n=4 k$ with $k>1$. There exists a simply-connected, closed, almost complex manifold M^{n} such that $H^{*}(M ; \mathbb{Q}) \cong H^{*}$ iff
There exist $c=1+c_{1}+\cdots+c_{2 k} \in \bigoplus_{i=0}^{2 k} H^{2 i}$ and $\mu \in H_{0}=\left(H^{n}\right)^{*} \cong \mathbb{Q}$ that satisfy:
(i) The intersection form $\left(H^{2 k}, \lambda_{\mu}\right)$ is isomorphic to $a\langle+1\rangle \oplus b\langle-1\rangle$ over \mathbb{Q}.
(ii) Hirzebruch signature equation. $\left\langle L_{k}\left(p_{1}(c), \ldots p_{k}(c)\right), \mu\right\rangle=\sigma\left(H^{2 k}, \lambda_{\mu}\right)$, where $p_{i}(c)=(-1)^{i} \sum_{j=0}^{2 i}(-1)^{j} c_{j} c_{2 i-j}$.
(iii) Riemann-Roch integrality conditions among Chern numbers of $4 k$-dim almost complex manifolds. $\left\langle\mathbb{Z}\left[e_{1}^{c}, e_{2}^{c}, \ldots\right] \cdot \mathrm{Td}, \mu\right\rangle \in \mathbb{Z}\left(\operatorname{Stong}, \operatorname{Im}\left(\tau: \Omega_{n}^{U} \rightarrow H_{n}(B U ; \mathbb{Q})\right)\right.$
(iv) If $n \equiv 4(\bmod 8)$,
case 1 . If $c_{1} \neq 0$, no additional condition.
case 2 . If $c_{1}=0$, integrality conditions among Chern numbers of $4 k-\operatorname{dim} S U$ manifolds. $\left\langle\mathbb{Z}\left[e_{1}^{p(c)}, e_{2}^{p(c)}, \ldots\right] \cdot \hat{A}, \mu\right\rangle \in 2 \mathbb{Z}$ (Stong, $\operatorname{Im}\left(\tau: \Omega_{n}^{S U} \rightarrow H_{n}(B S U ; \mathbb{Q})\right.$)
(v) The number $\left\langle c_{2 k}, \mu\right\rangle=\chi\left(H^{*}\right)=\sum_{i=0}^{n}(-1)^{i} \operatorname{dim}\left(H^{i}\right)$.
almost complex manifolds $b_{n / 2} \geq 1, b_{0}=b_{n}=1$
[Su,arXiv:2204.04800]

Theorem

An $n=4 k(k>1)$-dimensional closed almost complex manifold with Betti number $b_{i}=0$ except $b_{0}=b_{n}=1, b_{n / 2} \geq 1$ must have even signature σ and even Euler characteristic χ, i.e., the middle Betti number $b_{n / 2}$ must be even.
proof. The only nonzero Chern numbers are $x=c_{k}^{2}[M]$ and $\chi=c_{2 k}[M]$

- When $n=8 k$,

$$
\left\{\begin{array}{l}
L_{2 k}[M]=\left(2 s_{k}^{2}-s_{2 k}\right) x+2 s_{2 k} \chi=\sigma \text { with } s_{k}=\frac{2^{2 k}\left(2^{2 k-1}-1\right)\left|B_{2 k}\right|}{(2 k)!} \\
\operatorname{Td}[M]=\frac{1}{2}\left(t_{2 k}^{2}-t_{4 k}\right) x+t_{4 k} \chi \in \mathbb{Z} \text { with } t_{k}=\frac{B_{k}}{k!} \\
e_{1}^{c} \cdot \operatorname{Td}[M]=\left[\frac{-t_{2 k}}{(2 k-1)!}+\frac{1}{2(4 k-1)!}\right] x-\frac{\chi}{(4 k-1)!} \in \mathbb{Z} \\
e_{1}^{c} e_{1}^{c} \cdot \operatorname{Td}[M]=\frac{x}{[(2 k-1)!]^{2}} \in \delta_{k} \mathbb{Z} \text { with } \delta_{k}=\left\{\begin{array}{cc}
1 & k=1 \\
2 & k>1
\end{array}\right.
\end{array}\right.
$$

$$
\begin{aligned}
& v_{2}(\sigma) \geq 4 k-2 v_{2}(k)-3 \\
& v_{2}(\chi) \geq 4 k-2 v_{2}(k)-2 \operatorname{wt}(k)-2
\end{aligned}
$$

For example, in $\operatorname{dim} n=8, \sigma \equiv 0 \bmod 2$,
in $\operatorname{dim} n=16, \sigma \equiv 0 \bmod 2^{3}$ and $\chi \equiv 0 \bmod 2^{2}$, in $\operatorname{dim} n=24, \sigma \equiv 0 \bmod 2^{9}$ and $\chi \equiv 0 \bmod 2^{6}$.

Existence Results

Let $\left(H^{*}, \sigma, \chi\right)$ denote a $n=4 k$-dim rational cohomology ring with $b_{i}=0$ except $b_{n / 2} \geq 1, b_{0}=b_{n}=1$, signature σ, and Euler characteristic χ. Does there exist any closed almost complex manifold realizing $\left(H^{*}, \sigma, \chi\right)$?

- (intersection form) need to assume the intersection form $\left(H^{2 k}, \lambda_{\mu}\right)$ is isomorphic to $a\langle 1\rangle \oplus b\langle-1\rangle$ with $a, b \geq 0$ for some fundamental class $\mu \in H_{0} \cong \mathbb{Q}$. prescribe $a=\frac{\chi+\sigma-2}{2} \geq 0, b=\frac{\chi-\sigma-2}{2} \geq 0$.

proposition

In $\operatorname{dim} 8,\left(H^{*}, \sigma, \chi\right)$ is realizable if and only if $\sigma \equiv 0 \bmod 2, \chi \equiv 0 \bmod 6$, $3 \sigma-\chi \equiv 0 \bmod 48$, and $a=\frac{\chi+\sigma-2}{2}>0, b=\frac{\chi-\sigma-2}{2}>0$.

$$
\left\{\begin{array} { l }
{ \langle L _ { 2 } , \mu \rangle = \frac { 1 } { 4 5 } (3 x + 1 4 \chi) = \sigma } \\
{ \langle \mathrm { Td } , \mu \rangle = \frac { 1 } { 7 2 0 } (3 x - \chi) \in \mathbb { Z } } \\
{ \langle e _ { 1 } ^ { c } \cdot \mathrm { Td } , \mu \rangle = - \frac { 1 } { 6 } \chi \in \mathbb { Z } } \\
{ \langle e _ { 1 } ^ { c } e _ { 1 } ^ { c } \cdot \mathrm { Td } , \mu \rangle = x \in \mathbb { Z } }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
3 x+14 \chi=45 \sigma \\
3 x-\chi=720 m \text { for } m \in \mathbb{Z} \\
\chi=6 s \text { for } s \in \mathbb{Z}^{+}
\end{array} \quad .\right.\right.
$$

