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Classical curvature notions

C. F. Gauss (1777-1855)

1

1https://www.banknoteworld.com/germany-federal-republic-10-deutsche-mark-
banknote-1999-p-38dz-unc-replacement.html
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Classical curvature notions
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1http://abyss.uoregon.edu/~js/cosmo/lectures/lec15.html
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Classical curvature notions

Riemannian Curvature Tensor

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

Sectional Curvature
K(span{X,Y }) = 〈R(X,Y )Y,X〉

|X|2|Y |2 − 〈X,Y 〉2
Ricci Curvature

Ric(X,Y ) = 1
n− 1 trace(Z 7→ R(Z,X)Y )

Scalar Curvature
S(p) = 1

n
traceRic

1https://www.sil.si.edu/DigitalCollections/hst/scientific-identity/explore.htm
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B. Riemann1

1826-1866



Curvature is a local property

K < 0 K > 0
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Curvatures via Optimal Transport
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Relations to Optimal Transport Theory

(Mn, g) complete, connected Riemannian manifold

von Renesse and Sturm (2005): If Ric > 0, the average distance
of corresponding points in nearby balls of small radius r > 0 is smaller
than the distance between their centres.

x y
x y

Ric = 0 Ric > 0
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Relations to Optimal Transportation Theory

x y

w

v
x′ y′ε ε

d(x, y)

Br(x) Br(y)

Average distance is

d(x, y)
(

1− r2

N + 2 Ric
)
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Relations to Optimal Transport Theory
µ0, µ1 probability measures on (X, d,m)

µ0 µ1

Minimal-cost distance

Wn(µ0, µ1) := inf
π

ˆ
X×X

c(x, y)dπ(x, y)

π ∈ P(X ×X) is a transport plan from µ0 to µ1:

π(A×X) = µ0(A)
π(X ×B) = µ1(B)

cost function c(x, y) = dn(x, y). Ln-Wasserstein distance
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Transport plan: Example
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Transport plan π:

π(b, f) = 1
3

π(a, e) = 5
12

π(a, g) = 1
12

π(c, g) = 1
6

—-
—-
—-

Cost(∝ distance):

1
3 · (2)
5
12 · (2)
1
12 · (4)
1
6 · (3)

——————–
Total cost = 7

3 .

This cost is minimized:

W1(Blue,Red) = 7
3 .
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Relations to Optimal Transport Theory
Another famous approach by Lott–Villani–Sturm (2009). Idea from
Cordero-Erausquin, McCann, and Schmuckenschläger in 2001

Theorem
(Mn, g) has lower Ricci curvature bound Ric(M) ≥ K iff
Entropy functional along Wasserstein geodesics is K-convex:

Ent(µt) ≤ (1− t)Ent(µ0) + tEnt(µ1)− K

2 t(1− t)W2(µ0, µ1)

Ent(µ) :=
´
ρ log ρdvol

ρ = dµ/dvol

1Y. Ollivier, A survey of Ricci curvature for metric spaces and Markov chains
Phil Kamtue YMSC, Tsinghua University
Introduction to discrete curvature notions



Two curvatures via Optimal Transport
Ollivier

x y

µ0 µ1

r

Kx,y,r := 1− W1(µ0, µ1)
d(x, y)

Lott–Villani–Sturm
µ0 µ1

µ1/2

t

Ent(µt)

0 1/2 1

Ent(µt) ≤ (1− t)Ent(µ0) + tEnt(µ1)

− K

2 t(1− t)W2(µ0, µ1)

Ent(µ) :=
´
ρ log ρdvol; ρ = dµ/dvol
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Ollivier Ricci curvature on graphs

On graphs/networks:

Definition (Ollivier Ricci curvature)
Given two points x, y,

κ(x, y) := 1− W1(mx,my)
d(x, y) .

This is the modified definition by
Lin-Lu-Yau (2011).

mx

x 1
6

1
6

1
6

1
2

1http://www.yann-ollivier.org/
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Y. Ollivier1

Facebook AI Research,
Paris (2017-)



Curvature via analytic approach
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Analytic approach to curvature
Bakry-Émery (1985):

Bochner’s formula:

1
2∆|∇f |2 = ‖Hess f‖2 + 〈∇f,∇∆f〉+ Ric(∇f,∇f).

With Ricx(v, v) ≥ Kx|v|2:

1
2∆|∇f |2≥〈∇f,∇∆f〉+K|∇f |2.

m

Γ2(f, f) ≥ KΓ(f, f).

where carré du champ
2Γ(f, g) := ∆(f · g)− f ·∆g − g ·∆f.= 2〈∇f,∇g〉
2Γ2(f, g) := ∆(Γ(f, g))− Γ(f,∆g)− Γ(g,∆f).
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Bakry-Émery curvature

In fact, Ric(M) ≥ K iff Γ2(f, f)(x) ≥ KΓ(f, f)(x) for all x, f .

Also, iff Γ(Ptf, Ptf)(x) ≤ e−2KtPtΓ(f, f)(x).
Pt := et∆. Heat diffusion: u = Ptf solves ∂tu = ∆u.

Definition (Elworthy(’89), Schmuckenschläger(’98), Lin–Yau(2010))

The Bakry-Émery curvature at x ∈ X to be

Kx := sup { k ∈ R : Γ2(f, f)(x) ≥ kΓ(f, f)(x) for all f }.

Graph Laplacian ∆

∆f(x) :=
∑

y∈N(x)

pxy(f(y)− f(x))
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Bakry-Émery curvature

Quadratic form: A(f, g) =
∑
i,j

aijf(vi)g(vj) = fAgT

Here A is a matrix, and f, g are vector representations.

Γ2(f, f)(x) ≥ KΓ(f, f)(x) for all f ⇐⇒ Γ2(x) − KΓ(x) ≥ 0
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Compare curvature notions

Curvature notions Where is it defined? Computation
Bakry-Émery vertices SDP

Ollivier edges LP
Entropic global not known
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Graph Curvature Calculator

Nothing to do with Graphic calculator1

1https://www.tech-line-inc.com/shop/ti-84-plus-ce-graphing-calculator/
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Curvature calculator tool by Cushing–Stagg
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Web Link

This tool is freely available at

http://www.mas.ncl.ac.uk/graph-curvature/

Easy to use and very helpful to make lots of discoveries!!

Alternatively, it can also be installed locally on your computer. For
installation details, see

https://mas-gitlab.ncl.ac.uk/graph-curvature

Phil Kamtue YMSC, Tsinghua University
Introduction to discrete curvature notions



Examples of graphs(1)

Discrete hypercube Qn = {0, 1}n
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Examples of graphs(1)

Discrete hypercube Qn = {0, 1}n
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Examples of graphs(2)

Tree
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Examples of graphs(2)

Tree
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Examples of graphs(3)

Dumbbell graph
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K < 0 K > 0



Applications

Connectivity: clusters and bridges.
Dynamics.
Discoveries: Which graphs look like spheres?
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Connectivity
Looking for clusters and bridges...
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Connectivity
Looking for clusters and bridges
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Connectivity
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Connectivity
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Dynamics
Community Detection on Networks with Ricci Flow
C.-C. Ni, Y.-Y. Lin, F. Luo, J. Gao, 2019
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Dynamics
Ollivier Ricci curvature in applied fields...

Complex biological networks: cancer, brain connectivity,
phylogenetic tree
Quantifying the systemic risk and fragility of financial systems
Investigating node degree, the clustering coefficient and global
measures on the in- ternet topology
“Congestion” phenomenon in Wireless network under heat
diffusion protocol
Fast approximating to the tree-width of a graph and applications
to determining whether a Quadratic Unconstrained Binary
Optimization problem is solvable on the D-Wave quantum
computer
the problem of quantum grativity
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Bonnet-Myers Diameter bound: K = inf Ric > 0

Bonnet-Myers:

diam(M) ≤ π
√
n− 1
K

.

Cheng’s Rigidity:

equality⇔M is n-sphere.

Discrete Bonnet-Myers:

diam(G) ≤ 2
K
.

Rigidity:

equality⇔ G = ???

i.e., which graphs look like

spheres?

Call G Bonnet-Myers sharp.
Hypercubes Qn are Bonnet-Myers
sharp. Are there others?
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Hypercube Qn and Demi-cube Q2n
(2)

Hypercube Qn

V = {n-bit strings}
x ∼ y if Hamming distance = 1

0000

1000

0100
0010

0001

Demi-cube Q2n
(2)

V = {2n-bit strings with even 0’s}
x ∼ y if Hamming distance = 2

0000

1010

0110

1001
0101

0011

1100

1111
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Cocktail party graph CP (n)
Cocktail party graph CP (n)

V = {n couples}, that is, |V | = 2n
Everyone shakes hands with everyone else except for their partner.

vertex degree = 2n− 2; diam = 2

Figure: CP (3) a.k.a. Octahedron
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Johnson graph J(2n, n)
Johnson graph J(2n, n)

V = {x ⊂ [2n] : |x| = n} where [2n] = {1, 2, ..., 2n}
x ∼ y if |x ∩ y| = n− 1

vertex degree = n2; diam = n

Figure: Johnson graphs J(6, 3), J(8, 4), and J(10, 5)
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The Gosset graph

The Gosset graph

|V | = 56 vertex deg = 27 diam = 3.

Figure: the Gosset graph 1

1https://en.wikipedia.org/wiki/Gosset_graph
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Surprising relation to strongly spherical graphs
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A more complete answer...

Theorem (Cushing, K., Koolen, Liu, Münch, Peyerimhoff, 2018)
A regular self-centered graph G which is Bonnet-Myers sharp must
be one of the following:

a hypercube Qn, n ≥ 2,
a cocktail party graph CP (n), n ≥ 2,
a demi-cube Q2n

(2), n ≥ 2,
a Johnson graph J(2n, n), n ≥ 2,
the Gosset graph,
a Cartesian product G = G1 ×G2 × ...×Gm of the above graphs
with the condition

deg(G1)
diam(G1) = deg(G2)

diam(G2) ... = deg(Gm)
diam(Gm) .
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Non-regular Bonnet-Myers sharp

K = 2/diam(G)
antitrees: AT (1, 2, 1), AT (1, 3, 3, 1), AT (1, 4, 6, 4, 1)
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Non-regular Bonnet-Myers sharp

AT (1, 5, 10, 10, 5, 1) is NOT.
AT (1, 6, 15, 19, 15, 6, 1) is.
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Thank you for your attention!
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Graphs with positive curvature

Bonnet-Myers (or discrete B.-M.) requires Ric ≥ K > 0. Can we drop
the ≥ K condition, i.e. is it still true that a manifold is compact (or a
graph is finite), assuming that Ric > 0 but inf Ric = 0?

Answer: No. Counterexample: Paraboloid1 and Anti-tree AT

1https://en.wikipedia.org/wiki/Paraboloid
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Transport plan: Example
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Transport plan: Definition

Definition (probability measure on graph)
A probability measure µ on V (written as µ ∈ P (V )) is a function
µ : V → [0,∞) such that

∑
x∈V

µ(x) = 1, and supp(µ) <∞.

Definition (transport plan)
A transport plan π from µ1 to µ2 (written as π ∈

∏
(µ1, µ2)) is a

function π : V × V → [0,∞) such that∑
w∈V

π(z, w) = µ1(z) and
∑
z∈V

π(z, w) = µ2(w).

(i.e. π(z, w) is amount of mass transported from z to w).
The (total) cost of π is

∑
z,w∈V

π(z, w)c(z, w), where

c(z, w) = d1(z, w).
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Wasserstein distance

Definition (1-Wasserstein distance)
For µ1, µ2 ∈ P (V ),

W1(µ1, µ2) := inf
π∈Π(µ1,µ2)

∑
z,w∈V

π(z, w)d1(z, w).

Any π realizing the infimum is called an optimal transport plan.
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Bakry-Émery curvature CD(K,n)
Bochner’s formula:

1
2∆|∇f |2 = ‖Hess f‖2 + 〈∇f,∇∆f〉+ Ric(∇f,∇f).

⇓

With Ricx(v, v) ≥ Kx|v|2:

1
2∆|∇f |2≥ 1

n
(∆f)2 + 〈∇f,∇∆f〉+K|∇f |2.

m

Γ2(f, f) ≥ 1
n (∆f)2 + KΓ(f, f).

where carré du champ
2Γ(f, g) := ∆(f · g)− f ·∆g − g ·∆f.= 2〈∇f,∇g〉
2Γ2(f, g) := ∆(Γ(f, g))− Γ(f,∆g)− Γ(g,∆f).
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