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Part I
Geometry



Hyperbolic surface

Modeled on hyperbolic plane,
with isometries as symmetries.

Uniform negative curvature.
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Hyperbolic surface

Universal cover is isometric to
hyperbolic plane.

Convenient for visualization.
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Half-translation surface

Modeled on the euclidean
plane, with translations and
180° flips as symmetries.

Curvature concentrated at
conical singularities.
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Half-translation surface

We'll only use the simplest
kind of conical singularity.

It looks like three half-planes
glued along their edges.

The angle around it is 3.



Half-translation surface
with its vertical foliation

The foliations of the charts by

vertical lines fit together into a
foliation of the surface.

Horizontal distance gives a
local measure on swaths of
leaves.

vertical
foliation

euclidean plane




Half-translation surface
with its vertical foliation y \\
At a conical singularity, three
vertical leaves meet.
The vertical leaves that hit
/A .

singularities are called critical.
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Half-translation surface
with its vertical foliation

The vertical foliation makes
half-translation surfaces differ-
ent from hyperbolic surfaces.

It also hints at a similarity.

vertical
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Hyperbolic surface

with a geodesic lamination

The closest thing to a geodesic
foliation is a maximal set of
non-intersecting geodesics.

Can give it a measure, which
assigns a “thickness” to each
swath of leaves.
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Hyperbolic surface

with a geodesic lamination

Its complement is a finite set of
ideal triangles.
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hyperbolic surface half-translation surface

Chosen maximal geodesic lamination  Vertical foliation
Chosen measure Horizontal distance measure



hyperbolic surface half-translation surface

Chosen maximal geodesic lamination Vertical foliation
Chosen measure Horizontal distance measure
Boundary leaves Critical leaves

Bulk leaves Non-critical leaves
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Curvature
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hyperbolic surface half-translation surface

Chosen maximal geodesic lamination  Vertical foliation

Chosen measure Horizontal distance measure

Boundary leaves Critical leaves

Bulk leaves Non-critical leaves
Complementary ideal triangle Tripod of critical leaves

Curvature —7 within triangle Curvature —r at singularity



hyperbolic surface half-translation surface
Chosen maximal geodesic lamination Vertical foliation

Complementary ideal triangle Tripod of critical leaves

Gupta’s collapsing process makes this analogy concrete.

It links each hyperbolic surface to a half-translation surface through a quo-
tient map that lines up analogous features.

(Gupta 2014; Mirzakhani 2008; Bonahon 1987; Casson, Bleiler 1982.)



The horocyclic foliation
from a geodesic lamination

An ideal triangle comes with a
foliation by horocycles.

A surface with a maximal
geodesic lamination gets a foli-
ation by horocycles.
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Collapsing

hyperbolic surfaces

"

Horizontal distance: measure of the geodesic lamination.

Vertical distance: metric distance perpendicular to horocyclic foliation.



Collapsing

hyperbolic surfaces

n

Horizontal distance: measure of the geodesic lamination.

Vertical distance: metric distance perpendicular to horocyclic foliation.



Collapsing

hyperbolic surfaces

o

Horizontal distance: measure of the geodesic lamination.

Vertical distance: metric distance perpendicular to horocyclic foliation.



Collapsing

hyperbolic surfaces

Horizontal distance: measure of the geodesic lamination.

Vertical distance: metric distance perpendicular to horocyclic foliation.



Collapsing

hyperbolic surfaces

Collapsing charts: maps to R? preserving vertical and horizontal distances.
They straighten the geodesic lamination and the horocyclic foliation.

They collapse the complementary triangles of the geodesic lamination.
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Collapsing charts: maps to R? preserving vertical and horizontal distances.

They straighten the geodesic lamination and the horocyclic foliation.

They collapse the complementary triangles of the geodesic lamination.



Collapsing

hyperbolic surfaces

Collapsing charts are related by translations and 180° flips.
Their images fit together into a half-translation surface.

They fit together into a quotient map, which should also be a homotopy
equivalence (by Edmonds 1979).



Collapsing

hyperbolic surfaces

N

Each complementary triangle collapses to a tripod of critical leaves.

The unfoliated contact triangle in the middle collapses to the singularity.



hyperbolic surface half-translation surface

7
/ Vertical foliation
Complementary / Tripod of
ideal triangle \\ // critical leaves

Chosen maximal
geodesic lamination




Part II
Representation theory



Hyperbolic surface

with its local system of charts

Each open subset comes with a
set of charts.

Charts can be restricted and
glued, so they form a sheaf.

Charts extend uniquely, so the
sheaf is locally constant.

The action of Isom* H? makes
the sheaf a local system.
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Hyperbolic surface

with its spin charts

Over the unit tangent bundle,
the local system of charts trivi-
alizes canonically.

Hence, it lifts canonically to a
SL, R local system along the
double covering

SL, R —> Isom* H?

I'll call its lift the local system
of spin charts.

hyperbolic
plane



Half-translation surface
with its local system of charts

A half-translation surface’s
local system of charts is acted
on by translations and flips. |

Over the vertical unit tangent
bundle, it lifts canonically to a

translation local system.

1

euclidean plane
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A half-translation surface’s
local system of charts is acted
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Over the vertical unit tangent
bundle, it lifts canonically to a
translation local system.

euclidean plane
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Half-translation surface
with its local system of charts

A half-translation surface’s
local system of charts is acted
on by translations and flips.

Over the vertical unit tangent
bundle, it lifts canonically to a
translation local system.
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hyperbolic surface

Chosen maximal geodesic lamination
Complementary ideal triangle

Local system of spin charts
Structure group SL, R

half-translation surface
Vertical foliation
Tripod of critical leaves

Local system of vertical charts
Structure group diag* SL, R



hyperbolic surface half-translation surface
Chosen maximal geodesic lamination ~ Vertical foliation
Complementary ideal triangle Tripod of critical leaves

Local system of spin charts Local system of vertical charts

Gaiotto, Hollands, Moore, and Neitzke’s abelianization process extends the
collapsing process to include the analogy between local systems of charts.
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quotient map

from Gupta’s collapsing process



Abelianization

SL, R local systems on unit
tangent bundle

N

diag* SL, R local systems on
vertical unit tangent bundle

local system of T

vertical charts
{ ]

local system
of spin charts

quotient map

from Gupta’s collapsing process



Abelianization

. pushforward .
SL, R local systems on unit 3 SL, R local systems on vertical

tangent bundle unit tangent bundle

N

diag* SL, R local systems on
vertical unit tangent bundle

local system of T

vertical charts

local system
of spin charts

quotient map

from Gupta’s collapsing process



Abelianization

. pushforward .
SL, R local systems on unit 3 SL, R local systems on vertical

tangent bundle unit tangent bundle
A

Gaiotto, Hollands, abelianization \l{
Moore, Neitzke 2013
diag* SL, R local systems on
vertical unit tangent bundle

F. 2018 (preprint) T

local system Bonahon, Dreyer 2017
of spin charts
local system of

vertical charts

quotient map

from Gupta’s collapsing process




Hyperbolic charts
via the bundle of paths

Take smooth paths up to:

« Homotopies fixing starting and
ending unit tangent vectors.

« Removing loops.

Projection to starting tangent gives
bundle M — UGy,

Each fiber is the unit tangent bundle
of a universal cover of Cyp,.

paths from
given tangent
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Hyperbolic charts
via the bundle of paths

For each path, one local chart sends
ending tangent to base point in UH?.

Thus, M parameterizes local charts.

Say a section of M is flat if the ending
tangent stays still.

The local system of flat sections of M
is the local system of charts.

paths from
given tangent
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Abelianization
in action
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In the local system of spin charts, pushed forward to Cq,y, parallel transport
across a singular leaf looks like this.
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Abelianization
in action

&
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To abelianize, we cut along the singular leaf, apply a special “slithering auto-
morphism” of E, and reglue.

The slithering automorphism acts on the endings of paths by an isometry of
the local universal cover.



