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The spaceH2
•

Definition

Definition
H2

• := the set of (isometry classes) of hyperbolic surfaces with a
basepoint

= {(X, p) : X a hyperbolic surface, p ∈ X}/ ∼

where (X, p) ∼ (X′, p′) if there is a basepoint-preserving isometry between
them. We equipH2

• with the pointed Gromov-Hausdorff topology.

In this talk, a hyperbolic surface is assumed to be connected, oriented, and
metrically complete without boundary, unless specified otherwise.
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Results

Theorem (W., )
The spaceH2

• is path-connected.

Theorem (W., )
H2

• is weakly locally path-connected at the following points:

▶ (X, p), where X is of the first kind

▶ (H2, z0).
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Hyperbolic surfaces

A hyperbolic surface is a -dimensional Riemannian manifold locally
modeled by a neighborhood of the Poincaré disk, which is the unit disk

D = {z ∈ C : |z| < 1}

with the metric
|ds|2 =

4|dz|2

(1− |z|2)2
.

The Poincaré disk is the unique (up to isometry) complete simply connected
Riemann surface with constant sectional curvature−1.
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The Poincaré disk

A tiling of the Poincaré disk by
冰墩墩 generated using Marlin

Christersson’s tool

Beltrami’s original model ( )
Source: M. Cornalba, Attualità di

Eugenio Beltrami
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Hyperbolic surfaces

Equivalently, we can also take the upper-half plane to be a model of
hyperbolic geometry. This is

H2 = {z ∈ C : Im(z) > 0}

with the metric |ds|2 = 1
|Im(z)|2 |dz|

2.

A hyperbolic surface X can be viewed as the quotient manifold

X ∼= H2/Γ

where Γ is a discrete torsion-free subgroup of Isom+(H)2 ∼= PSL2(R)
acting onH2.
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Examples of hyperbolic surfaces

Here, all hyperbolic surfaces are assumed to be connected, oriented, and
metrically complete without boundary, unless specified otherwise.

Examples

▶ The Poincaré disk D

▶ Finite-type surfaces of genus gwith p punctures, where 2− 2g− p < 0
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Examples of hyperbolic surfaces

▶ Nielsen extensions of finite-type hyperbolic surfaces with geodesic
boundary
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Examples of hyperbolic surfaces

▶ Infinite-type hyperbolic surfaces
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Examples of hyperbolic surfaces

▶ More generally, any topological surface that is homeomorphic to
S2 − K, where K is a closed subset of a Cantor set, can be equipped
with a complete hyperbolic metric.
▶ This follows from the classification of non-compact surfaces by Kerékjártó

( ) and Richards ( ) and a decomposition of such surfaces by
Bavard-Walker ( ).
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Understanding the geometry of a surface
Geodesic pants decomposition

Definition
A geodesic pants decomposition of a hyperbolic surface X is a collection of
pairwise disjoint, mutually homotopically distinct simple closed geodesics
{γi}i∈I on X so that the closure of each component of X−

∪
γi is a geodesic

pair of pants.
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Understanding the geometry of a surface
A decomposition theorem

Theorem (Álvarez-Rodriguez, ; Basmajian-Šarić, )
Let X be a complete hyperbolic surface without boundary with a nonabelian
fundamental group that is not diffemorphic to a sphere with three points
removed.
Then, the convex core CC(X) admits a geodesic pants decomposition, and
each component of X− CC(X) is either a funnel or a half-plane.

Definition
A hyperbolic surface X is of the first kind if CC(X) = X. Otherwise, it is of
the second kind.
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Understanding the geometry of a surface
Building blocks

Types of building blocks of a hyperbolic surface
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Understanding the geometry of a surface
Fenchel-Nielsen Coordinates

A more typical surface inH2
• might look like this...

Fix a pants decomposition P = {γi}i∈I of X. Its hyperbolic structure is
determined by the Fenchel-Nielsen coordinates of X with respect to P :

FN (X) = ((length[γi], twist[γi]))i∈I .
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Understanding the geometry of a surface
On twist parameters

No twist 3π/2 twist
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Understanding the geometry of a surface
A remark on half-planes

A tight flute surface

X =
γ1

γ2 γ3

dn = dX(γn, γn+1)

Theorem (Basmajian, )
If
∑
n
dn < ∞ and

∑
n
|twist[γn]| < ∞, then the metric completion of X

contains a half-plane.
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The pointed Gromov-Hausdorff topology
The Gromov distance

There are several useful notions to compare two closed surfaces that are
diffeomorphic.
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The pointed Gromov-Hausdorff topology
Motivation

Motivation: A surface can be approximated by a sequence of larger and
larger compact subsurfaces.

p

p1

p2

p3

X

X1

X2

X3
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The pointed Gromov-Hausdorff topology
Importance of basepoints

Caveat: It’s important to use a basepoint keep track of the local geometry
if we hope to get a unique limit.
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The pointed Gromov-Hausdorff topology
A “strong” definition with quasi-isometry

Definition
For K > 1 and r > 0, a (K, r)-quasi-isometry between (X, p) and (Y, q) inH2

•

is a diffeomorphism between two subsurfaces (X1, p) ⊂ (X, p) and
(Y1, q) ⊂ (Y, q)

f : (X1, p) → (Y1, q)

such that

. BX(p, r) ⊂ (X1, p) and BY(q, r) ⊂ (Y1, q);

. f(p) = q;

. For all x, x′ ∈ X1,

1

K
d(x, x′) ≤ d(f(x), f(x′)) ≤ Kd(x, x′).
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The pointed Gromov-Hausdorff topology
Convergence criterion

Convergence criterion
InH2

•, (Xn, pn) → (X, p) if for all K > 1, r > 0, there exists n ∈ N sufficiently
large so that there is an (K, r)-quasi-isometry between (Xn, pn) and (X, p).

p

p1

p2

p3

X

X1

X2

X3

Upshot: Two pointed surfaces are close in the pointed GH topology if large
compact subsurfaces around their respective basepoints are almost
isometric.
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The pointed Gromov-Hausdorff topology
Some remarks

▶ The topology is Hausdorff. In fact, it’s metrizable.

▶ Generalizes toHn
•, the space of pointed n-dimensional hyperbolic

manifolds

▶ Has rich applications in dimension . It’s a crucial ingredient in the
works of Jørgensen-Thurston in determining the volume spectrum.

▶ In the setting of hyperbolic manifolds, this version of the definition is
equivalent to the notion of (ϵ, R)-relations introduced by Edwards
( ) and generalized by Gromov ( ).

▶ This is related to the Chabauty topology on the space of closed
subgroups of Isom+(Hn).
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Chabauty topology
Definition

Definition
Given a Lie group G, let Sub(G) be the set of closed subgroups of G. The
Chabauty topology on Sub(G) is generated by all open sets of the form

. O1(K) = {H ≤ G : H ∩ K = ∅}, K ⊂ G is compact;

. O2(U) = {H ≤ G : H ∩ U 6= ∅}, U ⊂ G is open.

Chabauty convergence
In Sub(G), Hn → H if

. ∀h ∈ H, ∃hn ∈ Hn such that hn → h and

. H contains the limits of all convergent
sequences hn ∈ Hn.

▶ Sub(G) is compact and Hausdorff.
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Relationship with the Chabauty topology
Framed surfaces

▶ Let SubDT(PSL2 R) ⊂ Sub(PSL2 R) be the subspace of discrete
torsion-free subgroups of PSL2 R with the Chabauty topology.

▶ LetH2
f be the space of hyperbolic surfaces with baseframe

H2
f = {(X, p,w) : (X, p) ∈ H2

•,w an orthonormal basis of Tp(X)}/ ∼

where∼ is by baseframe-preserving isometry.

▶ We equipH2
f with the framed version of the pointed GH topology.
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Relationship with the Chabauty topology
Framed surfaces

▶ Fix z0 ∈ H2 and an oriented orthonormal basis v0 of Tz0(H2).

▶ Let π : H2 → H2/Γ be the projection. Then, the map

SubDT(PSL2 R) −→ H2
f

Γ 7−→ (H2/Γ, π(z0), dπz0(v0))

gives a homeomorphism! See Canary-Marden-Epstein ( ).
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Relationship with the Chabauty topology
Prior Results

▶ The Chabauty closure of the subspace of one-generator subgroups of
PSL2 R is simply connected. (Baik-Clavier, )

▶ The subspace of closed elementary subgroups of Sub PSL2(R) is
simply connected. (Biringer-Lazarovich-Leitner, )
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Relationship with the Chabauty topology
Prior Results

If S is a finite-type hyperbolic -orbifold, we write

Sub(PSL2 R; S) := {Γ ∈ Sub(PSL2 R) : H2/Γ ∼= S}.

LetM(S) be the moduli space of S.

Theorem (Biringer-Lazarovich-Leitner, )
For such an S, the map

πSub : Sub(PSL2 R; S) → M(S)

is a fiber orbibundle with fiber T1S and Sub(PSL2 R; S) is a 6g+ 2(k+ l)− 3

dimensional manifold, where g is the genus of S, and k is the number of
cusps, and l is the number of cone points.
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Relationship with the Chabauty topology
Prior Results

Theorem (Biringer-Lazarovich-Leitner, )
Suppose that either a four-punctured sphere or a once-punctured torus
embeds in S as the interior of a surface with geodesic boundary. Then
Sub(PSL2(R); S) is simply connected.
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Results

Theorem (W., )
The spaceH2

• is path-connected.

Theorem (W., )
H2

• is weakly locally path-connected at the following points:

▶ (X, p), where X is of the first kind

▶ (H2, z0).
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Continuous paths inH2
•

Examples

We can create a continuous path inH2
• by

▶ Moving a basepoint along a path on a fixed surface

▶ Adjusting finitely many length and twist parameters in the
Fenchel-Nielsen coordinates

γ
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Continuous paths inH2
•

Examples (cont.)

We can create a continuous path inH2
• by

▶ Pinching a simple closed geodesic to a cusp

S. Warakkagun | Connectivity of the Space of Pointed Hyperbolic Surfaces



Continuous paths inH2
•

Examples (cont.)

We can create a continuous path inH2
• by

▶ Inserting and growing a strip along a properly embedded infinite
geodesic

Setup

▶ a hyperbolic surface X with a proper geodesic α and a ∈ α

▶ an s-strip, s > 0

waist τ

core

D

τ -equidistant arcs

ℓ(τ) = s

α

X

a

Cut X along α Glue a strip in

Xs = Strip (X,α, a, s)
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Continuous paths inH2
•

Strip insertion is continuous

Proposition (W., )
Fixing (X, p) ∈ H2

• and α and a as above, the map

R+ → H2
•

s 7→ (Xs, p)

is continuous. That is, inserting and growing a strip is a continuous
construction inH2

•.
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Global path-connectivity ofH2
•

Proof sketch

Theorem
The spaceH2

• is path-connected.

Proof.

(X, x) (H2, z0)
Grow strips

Move basepoint/
shrink curves Move basepoint

Move basepoint out
a funnel/half-plane

(H2, z0)
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Local path-connectivity ofH2
•

Actually weakly

Definition
A space X is weakly locally path-connected at x ∈ X if every open
neighborhood U of x contains an open neighborhood V of x such that any
two points in V lie in some path-connected subset of U.

U

V

Upshot
If X is weakly locally path-connected at each point, then X is locally
path-connected.
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Local path-connectivity ofH2
•

Now and next

Theorem
H2

• is weakly locally path-connected at the following points:

▶ (X, p), where X is of the first kind

▶ (H2, z0).

Goal
The spaceH2

• is locally path-connected? Contractible?
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Local path-connectivity ofH2
•

At (X, p), where X is of the first kind

▶ Exhaust X by finite-area subsurfaces with geodesic boundary

X1 ⊂ X2 · · · ⊂ X

▶ Define a neighborhood basis based on the Xn

Z XQ X̂nXn
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Continuous paths inH2
•

Two particular strip insertions

We make use of two special strip insertions.
▶ Turning cusp into funnels

Y
1 Y

1

s

γ1 γ2

α

γ1 γ2

a

γ1 γ2

▶ Turning cusps into funnel

γ

a
α

γ

α

Y
2 Y

2

s

γ
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Local path-connectivity ofH2
•

At (H2, z0)

Neighborhoods
For r > 0, let U(r) = {(X, p) : injradX(p) > r}.
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Local path-connectivity ofH2
•

At (H2, z0)

▶ When X is non-compact,

Theorem (Bavard-Walker, )
There is a collectionA of disjoint properly embedded geodesics in X
whose complement is a union of simply connected regions.

Figure: Fixing an end of X, we choose such geodesic arcs exiting that end for
every genus. The picture is modified from their paper.
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Local path-connectivity ofH2
•

At (H2, z0)

▶ When X is non-compact,
▶ add strips, one at a time, along the geodesics inA,
▶ take the limit as the strip widths go to∞, and
▶ we get a path from (X, p) to (H2, z0).
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Local path-connectivity ofH2
•

At (H2, z0)

p

X γ separating

β

▶ When X is compact,
▶ find a separating simple closed geodesic γ far from the basepoint p,
▶ pinch β on the other side of γ from p, and
▶ we return to the non-compact case!
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