Homological stability for the ribbon Higman–Thompson groups

Xiaolei Wu

J.w. Rachel Skipper

Shanghai Center for Mathematical Sciences

12.04.2022

History of Thompson groups

• [1965] The groups F, T, and V were first -defined by Richard Thompson. T and V are the first known examples of finitely presented infinite simple groups.

• [1974] Higman introduced what we call nowdays the Higman–Thompson groups.

• [70s] Fred-Heller, independtly Dydak, rediscovered F as the universal group encoding a free homotopy idempotent.

History of braided Thompson groups

• [2006] Brin and Dehornoy independently defined braided V.

• [2017] Thumann introduced ribbon Thompson groups.

• [\approx 2020] Braided and ribbon version of Higman–Thompson groups was first studied by Aroca–Cumplido and Skipper-W.

Xiaolei Wu Homological stability for the ribbon Higman–Thompson groups 12.04.2022 2/29

History of braided Thompson groups

- [2004] Funar-Kapoudjian introduced the asymptotic mapping class group on an infinite type surface.
- [2006] Brin and Dehornoy independently defined braided V.

- [2017] Thumann introduced the ribbon Thompson groups.
- [\approx 2020] Braided and ribbon version of Higman–Thompson groups was first studied by Aroca–Cumplido and Skipper-W.

Define Thompson's group V using paired tree diagram

• An element in V is a paired tree diagram $[T_1, \sigma, T_2]$ where T_1 and T_2 are two finite rooted binary trees with the same number of leaves, and σ is a bijection from the leaves of T_1 to T_2 .

F and T as subgroups of V

$$V = \{ \overline{L}_{1}, \overline{\sigma}, \overline{T}_{2} \} \{ \overline{\sigma} \}$$

$$V = \{ \overline{L}_{1}, \overline{\sigma}, \overline{T}_{2} \} \{ \overline{\sigma} \} \{ \overline{\sigma} \}$$

$$V = \{ \overline{L}_{1}, \overline{\sigma}, \overline{T}_{2} \}$$

Thompson's group \overline{V} as a subgroup of homeomorphisms of the Cantor set

Xiaolei Wu Homological stability for the ribbon Higman–Thompson groups 12.04.2022 6/29

Higman–Thompson groups

$$U_{1} = \left\{ \left(\overline{T}_{1}, \overline{\sigma}, \overline{T}_{2}\right) \middle| \sigma \text{ bijerin} \right\}$$

$$V_{r} = \left\{ \left(\bigcup_{i=1}^{r} \overline{T}_{ii}, \overline{\sigma}, \bigcup_{i=1}^{r} \overline{T}_{2i}\right) \middle| \sigma \text{ bijerin} \right\}$$

$$\left[\left(\sum_{i=1}^{r} \overline{\sigma}, \widehat{\sigma}, \bigcup_{i=1}^{r} \overline{\sigma}, \bigcup_{i=$$

Why V?

 $\{c, \tau, \sigma, \tau\} \{\sigma\}$

CW-Upx X, St. X/G

Ras finite in each dim fi (V,2)= fo3 for yr

• V contains all finite groups.

• [Brown 1987] V is of type F_{∞} . S: 4 Lype Fro if it acts freeze on a contract

- *V* is dense in Homeo(C).
- [Szymik–Wahl 2019] V is acyclic.

How to show V is acyclic

$$Z \subseteq Z_{2}$$

$$V_{2}$$

$$V_{2}$$

$$V_{1} \leq V_{2} \leq V_{3} \leq \cdots \leq V_{n}$$

$$(T_{1}, \sigma, T_{2}) \rightarrow (T_{1}, \sigma \neq, \sigma, T_{2}, \sigma, T_{2}, \sigma)$$

$$Thm: for any is and n, (n >>i)$$

$$(*: H(CVn) \rightarrow H(CVn+i)$$

$$Step 2: Stable flowwigg.$$

Braided V [Brin 2006, Dehornoy 2006]

• An element in bV is a braided paired tree diagram $[\underline{T}_1, b, \underline{T}_2]$ where T_1 and T_2 are two finite rooted trees with the same number of leaves, b is a braid.

- Equivalence relation:
- multiplication:

We define braided Higman–Thompson groups bV_r similarly.

Xiaolei Wu Homological stability for the ribbon Higman–Thompson groups 12.04.2022 10/29

Ribbon braid groups

Definition

Fact

An element in the ribbon braid group RB_n is

- B_n can be identified with the mapping class group of a disk with n punctures.
- *PRB_n* can be identified with the mapping class group of a *n*-holed disk.

• An element in RV_r is a braided paired tree diagram $[F_1, \mathfrak{r}, F_2]$ where F_1 and F_2 are two finite rooted forests with the same number of leaves, \mathfrak{r} is a ribbon braid.

• Equivalence relation:

Question

Is bV also acyclic? How about RV?

Remark

It is known that $H_1(bV) = 0$.

How one might prove bV is acyclic?

$$0 \quad bV_1 \leq bV_2 \leq bV_3 \leq \cdots$$

Xiaolei Wu Homological stability for the ribbon Higman–Thompson groups 12.04.2022 14/29

Theorem (Skipper–W)

The inclusion maps

$$\iota_*: H_i(RV_r, \mathbb{Z}) \to H_i(RV_{r+1}, \mathbb{Z})$$

induce isomorphisms on homology in all dimensions $i \ge 0$, for all $r \ge 1$.

A quick review on Homogeneous category

Definition

A monoidal category $(\mathcal{C},\oplus,0)$ is called homogeneous

• 0 is initial in C;

• Hom(A, B) is a transitive Aut(B)-set under postcomposition;

• The map $\operatorname{Aut}(A) \to \operatorname{Aut}(A \oplus B)$ taking f to $f \oplus \operatorname{id}_B$ is injective with image

 $\mathsf{Fix}(B) := \{ \phi \in \operatorname{Aut}(A \oplus B) \mid \phi \circ (\imath_A \oplus \operatorname{id}_B) = \imath_A \oplus \operatorname{id}_B \}$

where $\iota_A : 0 \to A$ is the unique map.

Xiaolei Wu Homological stability for the ribbon Higman–Thompson groups 12.04.2022 16/29

The space $S_n(X)$

Aut (X) G Aut (X) G $(\mathcal{C}, \oplus, 0)$, Let X be a object of the homogeneous category $(\mathcal{C}, \oplus, 0)$, then $S_n(X)$ denote the simplicial complex

• Vertices: morphisms $f: X \to X^{\oplus n}$;

• *p*-simplices: (p + 1)-sets $\{f_0, \ldots, f_p\}$ such that there exists a morphism $f: X^{\oplus p+1} \to X^{\oplus n}$ with $f \circ i_j = f_j$ for some order on the set, where

$$i_j = \imath_{X^{\oplus j}} \oplus \operatorname{id}_X \oplus \imath_{X^{\oplus p-j}} \colon X = 0 \oplus X \oplus 0 \longrightarrow X^{\oplus p+1}$$

Theorem (Randal-Williams–Wahl)

Let $(\mathcal{C}, \oplus, 0)$ be a homogeneous category such that the space $S_n(X)$ is $\frac{n-2}{k}$ for some $k \ge 2$, then

$$H_i(\operatorname{Aut}(X^{\oplus n})) \longrightarrow H_i(\operatorname{Aut}(X^{\oplus n+1}))$$

induced by the natural inclusion map is an isomorphism if $n \ge ki + 1$.

An example: braid groups I

Xiaolei Wu Homological stability for the ribbon Higman–Thompson groups

An example: braid groups II

The complex $S_n(X_{.})$:

Xiaolei Wu

Homological stability for the ribbon Higman–Thompson groups

Build a geometric model for the Ribbon Higman–Thompson groups.

Asymptotic mapping class group I: rigid structure

Asymptotic mapping class group II: paired surface diagram

An element in $\mathcal{B}V = \mathcal{B}V_1$ is a paired surface diagram

$$[\underline{\Sigma}_1, \phi, \underline{\Sigma}_2]$$

such that

- Σ_1 and Σ_2 are suited subsurface with the same number of suited loops.
- ϕ is a homeomorphism from Σ_1 to Σ_2 which coincides with the parametrization of the suited loops.
- Equivalence relation: 15. 74
- Composition:

Xiaolei Wu Homological stability for the ribbon Higman–Thompson groups 12.04.2022 24/29

Isomorphism results

Theorem (Skipper-W)

The groups $\mathcal{B}V_r$ and RV_r are isomorphic in a canonical way.

Key gadget: Lollipop

• Let
$$A = [0, 2]/1 \sim 2$$
.

•
$$L: (A, 0) \rightarrow (D \setminus C, 0)$$
 is a lollipop if
• L is an embedding.
• $L \mid_{[1,2]}$ is isotopic to a suited loop in $D \setminus C$,
• $L \mid_{[0,1]}$ is an arc connecting the base point 0 to
 $L([1,2])$.

The Lollipop complex

• vertices: isotopy classes of lollipops;

• L_0, L_1, \dots, L_p , form a *p*-simplex if they are pairwise disjoint outside the base point 0 and there exists at least one suited loop which does not lie inside the disks bounded by the L_i s.

The Lollipop complex is contractible

Connectivity of the lollipop complex

