DEFORMATION SPACE OF CIRCLE PATTERNS ON SURFACES WITH COMPLEX PROJECTIVE STRUCTURES

Wai Yeung Lam

BIMSA

29 March 2022

WAI YEUNG LAM (BIMSA)

CIRCLE PATTERNS

29 March 2022 1 / 30

OUTLINE

Motivation: Discrete holomorphic functions

- Classical theory: Complex projective structures
- Main results: Deformation space of circle patterns
- Key ingredients: Graph Laplacian (Cotangent weights), Harmonic conjugates
- Open questions

DISCRETE HOLOMORPHIC FUNCTIONS

Classical theory: A holomorphic function maps infinitesimal small circles to infinitesimal small circles.

(Figure from Ken Stephenson)

- Circle Packings Discrete holomorphic functions (Thurston 1985)
- Hexagonal packings → Riemann mapping (Rodin and Sullivan 1987)

CIRCLE PATTERNS

CIRCLE PATTERNS

Circle pattern is a realization of a planar graph in $\mathbb{C} \cup \infty$ such that the vertices of each face lie on a circle

■ Special case: Circle packing + dual packing

 \rightarrow Circle pattern with prescribed intersection angles $\Theta_{ii} \in \{0, \pi/2\}$

OUTLINE

- Motivation: Discrete holomorphic functions
- Classical theory: Complex projective structures
- Main results: Deformation space of circle patterns
- Key ingredients: Graph Laplacian (Cotangent weights), Harmonic conjugates
- Open questions

COMPLEX PROJECTIVE STRUCTURES

 M_g closed surface of genus g

DEFINITION

A conformal structure is a maximal atlas of charts to $\hat{\mathbb{C}}$ such that the transition functions are holomorphic.

 $\mathcal{T}(M)$ Teichmüller space = space of marked conformal structures \constant-curvature metrics

 $\Omega_{\textit{WP}}$ Weil-Petersson symplectic form

DEFINITION

A complex projective structure structure is a maximal atlas of charts to $\hat{\mathbb{C}}$ such that the transition functions are restrictions of *CP* transformations (Möbius transformations).

P(M) space of all marked complex projective structures Ω_G Goldman's complex symplectic form induced from Hom $(\pi_1(M), SL(2, \mathbb{C}))$

 $\pi: {\it P}({\it M})
ightarrow {\cal T}({\it M})$ uniformization map

WHY CP¹ STRUCTURES?

Möbius transformations map circles to circles

 \rightarrow Circles are well defined on surfaces with complex projective structures

Examples for $P(M_g)$ (g = 1)

Euclidean structures $\mathcal{T}(M)$

Complex affine structures (transition function $z \mapsto az + b$)

Examples for $P(M_g)$ (g > 1)

- Hyperbolic structures $\mathcal{T}(M)$
- Quasi-Fuchsian
- More...

FACTS ABOUT *CP*¹-STRUCTURES

Teichmüller space

$$\mathcal{T}(M_g) \cong egin{cases} \mathbb{R}^0 & ext{ for } g = 0 \ \mathbb{R}^2 & ext{ for } g = 1 \ \mathbb{R}^{6g-6} & ext{ for } g > 1 \end{cases}$$

Marked CP¹-structures

$$\mathcal{P}(M_g) \cong egin{cases} \mathbb{C}^0 & ext{ for } g = 0 \ \mathbb{C}^2 & ext{ for } g = 1 \ \mathbb{C}^{6g-6} & ext{ for } g > 1 \end{cases}$$

 $\pi: \mathit{P}(\mathit{M}_{g})
ightarrow \mathcal{T}(\mathit{M}_{g})$ is a fiber bundle

OUTLINE

- Motivation: Discrete holomorphic functions
- Classical theory: Complex projective structures
- Main results: Deformation space of circle patterns
- Key ingredients: Graph Laplacian (Cotangent weights), Harmonic conjugates
- Open questions

Cross ratios of 4 points z_1 , z_2 , z_3 , $z_4 \in \mathbb{C}$:

$$X(z_1, z_2, z_3, z_4) := -\frac{(z_1 - z_2)(z_3 - z_4)}{(z_2 - z_3)(z_4 - z_1)} \in \mathbb{C}$$

 \implies Cross ratio for every interior edge $X:E
ightarrow \mathbb{C}$ (Note: $X_{ij}=X_{ji}$)

Around each interior vertex i

$$1 = \prod_{j=1}^{n} X_{ij}$$
(1)
$$0 = (X_{i1}) + (X_{i1}X_{i2}) + \dots + (X_{i1}X_{i2}\dots X_{in})$$
(2)

DELAUNAY CROSS RATIO SYSTEM

DEFINITION

Given M = (V, E, F) a triangulation of a closed surface, a cross ratio system is a map $X : E \to \mathbb{C}$ such that for every vertex *i*

$$1 = \prod_{j=1}^{n} X_{ij}$$

0 = (X_{i1}) + (X_{i1}X_{i2}) + \dots + (X_{i1}X_{i2}\dots X_{in})

DEFINITION

A Delaunay angle structure is an assignment $\Theta: {\it E}
ightarrow [0, \pi)$ satisfying

1 For every vertex
$$i, \sum_i \Theta_{ij} = 2\pi$$
.

2 $\sum_{i=1}^{n} \Theta_{ii} > 2\pi$ for any closed loop on the dual graph bounding more than one face.

 $P(\Theta)$ the space of all cross ratio systems X with Arg $X \equiv \Theta$.

i.e. space of circle patterns with prescribed intersection angles

- Each Delaunay cross ratio system induces a complex projective structure on M together with a circle pattern by gluing circumdisks.
- It yields

$$P(\Theta) \xrightarrow{f} P(M) \xrightarrow{\pi} \mathcal{T}(M)$$

• How does $P(\Theta)$ look like? Manifold? Dimension? $\pi \circ f : P(\Theta) \to \mathcal{T}(M)$?

Elements of $P(\Theta)$

 $\Theta\equiv\pi/{\rm 3}$ on a triangulated torus.

Elements of $\mathcal{P}(\Theta)$

 $\Theta\equiv\pi/3$ on a triangulated torus.

Elements of $P(\Theta)$

 $\Theta\equiv\pi/{\rm 3}$ on a triangulated torus.

How does $P(\Theta)$ look like? Manifold? Dimension? $\pi \circ f : P(\Theta) \to \mathcal{T}(M)$?

CONJECTURE (KOJIMA-MIZUSHIMA-TAN (2003))

The projection $\pi \circ f : P(\Theta) \to \mathcal{T}(M)$ is a homeomorphism.

- (Mizushima 2000) One-vertex triangulation on torus: $P(\Theta)$ homeomorphic to \mathbb{R}^2 .
- (Kojima, Mizushima, and Tan 2003) General triangulation: Neighbourhood around the Euclidean Torus in P(Θ) is homeomorphic to ℝ². (g = 1, similar for g > 1)

■ (Schlenker, Yarmola 2018) $\pi \circ f$ is proper (g > 1)

Analogous to Thurston's grafting construction via measured laminations

MAIN RESULTS (FOR TORUS g = 1)

(L. 2019)

THEOREM (A)

Fixing any triangulation and Delaunay angle structure Θ on a torus,

1 $P(\Theta)$ is a real analytic surface homeomorphic to \mathbb{R}^2 .

2 $f: P(\Theta) \to P(M)$ is embedding

3 The holonomy map is embedding

```
\mathsf{hol}: \mathsf{P}(\Theta) \to \mathsf{Hom}(\pi_1(\mathsf{M}), \mathsf{PSL}(2,\mathbb{C})) /\!\!/ \mathsf{PSL}(2,\mathbb{C})
```

THEOREM (B)

The projection $\pi \circ f : \mathsf{P}(\Theta) o \mathcal{T}(\mathsf{M})$ is a homeomorphism.

MAIN RESULTS (FOR TORUS g = 1)

(L. 2022) Symplectic structure on $P(\Theta)$.

 $M_{g,n}$ denotes a genus-*g* surface with *n* punctures, where n = |V|.

THEOREM (C)

The pullback of the symplectic forms $h^*\Omega_{WP} = f^*\Omega_G$ coincides and are non-degenerate.

There is an induced real symplectic form on $P(\Theta)$.

COMPARE WITH THURSTON'S GRAFTING

THEOREM (THURSTON)

 $\mathit{Gr}:\mathcal{T}(\mathit{M_g}) imes \mathit{ML}(\mathit{M_g})
ightarrow \mathit{P}(\mathit{M_g})$ is a homeomorphism.

THEOREM (SCANNELL-WOLF (2002))

Fix $\lambda \in ML(M_g)$, the map $gr_\lambda: \mathcal{T}(M_g) o \mathcal{T}(M_g)$ is a homeomorphism.

OUTLINE

- Motivation: Discrete holomorphic functions
- Classical theory: Complex projective structures
- Main results: Deformation space of circle patterns
- Key ingredients: Graph Laplacian (Cotangent weights), Harmonic conjugates
- Open questions

GRAPH LAPLACIAN (COTANGENT WEIGHTS)

G = (V, E, F) cell decomposition of a surface, $c: E o \mathbb{R}_{\geq 0}$, with $c_{ij} = c_{ji}$.

DEFINITION

 $u: V
ightarrow \mathbb{R}$ is a discrete harmonic function on G if around each interior vertex $i \in V$

$$\sum_{j} c_{ij}(u_j - u_i) = 0$$

PROPOSITION

 $u:V o \mathbb{R}$ is discrete harmonic if and only if there exists $v:F o \mathbb{R}$ such that

$$v_{left(\vec{j})} - v_{right(\vec{j})} = c_{ij}(u_j - u_i)$$

where left (\vec{ij}) is the left face of the oriented edge \vec{ij} .

Check: The function *v* is a discrete harmonic function on the dual cell decomposition G^* with weights $c^* := \frac{1}{c}$.

GRAPH LAPLACIAN (COTANGENT WEIGHTS)

Circle patterns \implies radii of circles $R: F \rightarrow \mathbb{R}$ 1-parameter family of circle patterns $\implies R_t: F \rightarrow \mathbb{R}$

PROPOSITION

 $v := \frac{d}{dt} \log R_t$ is a discrete harmonic function on G^* where $c_{ij} = \cot \angle jki + \cot \angle ilj$.

Note: No non-constant harmonic functions on Tori.

We consider harmonic 1-forms.

A discrete 1-form is a function $\omega : \vec{E} \to \mathbb{R}$ such that $\omega_{ji} = -\omega_{ij}$. It is closed on *G* if $\forall \phi \in F$, $\sum_{ij \in \partial \phi} \omega_{ij} = 0$

DEFINITION

A closed discrete 1-form ω is **harmonic** if around each vertex $i \in V$

$$\sum_{j} c_{ij} \omega_{ij} = 0$$

PROPOSITION

A closed discrete 1-form ω on G is harmonic if and only if there exists a closed discrete 1-form η on G^{*} such that

$$\eta_{ij} = c_{ij}\omega_{ij}.$$

We call $*\omega := \eta$ harmonic conjugate of ω .

Recall: Harmonic 1-forms on Riemann surfaces are parameterized by periods

$$(\textbf{A},\textbf{B})=(\sum_{\gamma_1}\omega,\sum_{\gamma_2}\omega)$$

HARMONIC CONJUGATE ON PERIODS

For each triangulated affine tori, we define an action of harmonic conjugate on periods

$$*_G: \mathbb{R}^2 \to \mathbb{R}^2.$$

1 Given any $(A, B) \in \mathbb{R}^2$, find discrete harmonic 1-form ω such that

$$(A, B) = (\sum_{\gamma_1} \omega, \sum_{\gamma_2} \omega)$$

2 Compute periods of the harmonic conjugate

$$(\tilde{A}, \tilde{B}) = (\sum_{\gamma_1} *\omega, \sum_{\gamma_2} *\omega)$$

3 $*_G(A, B) := (\tilde{A}, \tilde{B})$. Known: $*_G$ is an isomorphism.

The period space is equipped with an inner product where $|(A, B)|^2$ is the Dirichlet energy of the corresponding smooth harmonic 1-form.

Note: smooth harmonic conjugate * is an isometry, i.e. ||*|| = 1.

WAI YEUNG LAM (BIMSA)

PROPOSITION

For non-Euclidean affine torus, $|| *_{G}^{-1} || < 1$.

OUTLINE

- Motivation: Discrete holomorphic functions
- Classical theory: Complex projective structures
- Main results: Deformation space of circle patterns
- Key ingredients: Graph Laplacian (Cotangent weights), Harmonic conjugates
- Open questions

OPEN QUESTIONS FOR TORI

- Algorithm for Thm (B): Fixing a triangulation and intersection angle ⊕, how to find the complex projective structure and circle pattern for any marked conformal structure?
- 2 Deformation space of circle patterns diffeomorphic to the Teichmuller space near Euclidean circle packing?

FURTHER CONNECTIONS

Why deformation space of circle patterns?

- 1 Discrete holomorphic functions
- 2 Classical Teichmuller theory
- 3 Discrete surface theory
- 4 Dimers and Circle patterns

WEIERSTRASS REPRESENTATION

Osculating Möbius transformation $A_h : F \to SL(2, \mathbb{C}) / \{\pm I\}$

$i: SL(2,\mathbb{C})/\{\pm I\} \to SL(2,\mathbb{C})/SU(2,\mathbb{C}) \cong \mathbb{H}^3$

CMC-1 surfaces in \mathbb{H}^3 (L.2020)

WAI YEUNG LAM (BIMSA)

CIRCLE PATTERNS

Thank you!

W.Y. Lam. Quadratic differentials and circle patterns on complex projective tori. Geom. Topol. (2019)