DEFORMATION SPACE OF CIRCLE PATTERNS ON SURFACES WITH COMPLEX PROJECTIVE STRUCTURES

Wai Yeung Lam

BIMSA

29 March 2022

Outline

■ Motivation: Discrete holomorphic functions
■ Classical theory: Complex projective structures
■ Main results: Deformation space of circle patterns
■ Key ingredients: Graph Laplacian (Cotangent weights), Harmonic conjugates

- Open questions

DISCRETE HOLOMORPHIC FUNCTIONS

Classical theory: A holomorphic function maps infinitesimal small circles to infinitesimal small circles.

(Figure from Ken Stephenson)

- Circle Packings - Discrete holomorphic functions (Thurston 1985)

■ Hexagonal packings \mapsto Riemann mapping (Rodin and Sullivan 1987)

CIRCLE PATTERNS

- Circle pattern is a realization of a planar graph in $\mathbb{C} \cup \infty$ such that the vertices of each face lie on a circle

■ Special case: Circle packing + dual packing
\rightarrow Circle pattern with prescribed intersection angles $\Theta_{i j} \in\{0, \pi / 2\}$

Outline

- Motivation: Discrete holomorphic functions

■ Classical theory: Complex projective structures

- Main results: Deformation space of circle patterns

■ Key ingredients: Graph Laplacian (Cotangent weights), Harmonic conjugates
■ Open questions

COMPLEX PROJECTIVE STRUCTURES

M_{g} closed surface of genus g

DEFINITION

A conformal structure is a maximal atlas of charts to $\hat{\mathbb{C}}$ such that the transition functions are holomorphic.
$\mathcal{T}(M)$ Teichmüller space $=$ space of marked conformal structures \constant-curvature metrics
$\Omega_{W P}$ Weil-Petersson symplectic form

DEFINITION

A complex projective structure structure is a maximal atlas of charts to \hat{C} such that the transition functions are restrictions of $C P$ transformations (Möbius transformations).
$P(M)$ space of all marked complex projective structures
Ω_{G} Goldman's complex symplectic form induced from $\operatorname{Hom}\left(\pi_{1}(M), S L(2, \mathbb{C})\right)$ $\pi: P(M) \rightarrow \mathcal{T}(M)$ uniformization map

Why CP ${ }^{1}$ STRUCTURES?

Möbius transformations map circles to circles
\rightarrow Circles are well defined on surfaces with complex projective structures

Examples for $P\left(M_{g}\right)(g=1)$
■ Euclidean structures $\mathcal{T}(M)$
■ Complex affine structures (transition function $z \mapsto a z+b$)

Examples for $P\left(M_{g}\right)(g>1)$
■ Hyperbolic structures $\mathcal{T}(M)$
■ Quasi-Fuchsian
■ More...

FACTS ABOUT CP ${ }^{1}$-STRUCTURES

Teichmüller space

$$
\mathcal{T}\left(M_{g}\right) \cong \begin{cases}\mathbb{R}^{0} & \text { for } g=0 \\ \mathbb{R}^{2} & \text { for } g=1 \\ \mathbb{R}^{6 g-6} & \text { for } g>1\end{cases}
$$

Marked $C P^{1}$-structures

$$
P\left(M_{g}\right) \cong \begin{cases}\mathbb{C}^{0} & \text { for } g=0 \\ \mathbb{C}^{2} & \text { for } g=1 \\ \mathbb{C}^{6 g-6} & \text { for } g>1\end{cases}
$$

$\pi: P\left(M_{g}\right) \rightarrow \mathcal{T}\left(M_{g}\right)$ is a fiber bundle

Outline

- Motivation: Discrete holomorphic functions
- Classical theory: Complex projective structures
- Main results: Deformation space of circle patterns

■ Key ingredients: Graph Laplacian (Cotangent weights), Harmonic conjugates
■ Open questions

Cross ratios of 4 points $z_{1}, z_{2}, z_{3}, z_{4} \in \mathbb{C}$:

$$
x\left(z_{1}, z_{2}, z_{3}, z_{4}\right):=-\frac{\left(z_{1}-z_{2}\right)\left(z_{3}-z_{4}\right)}{\left(z_{2}-z_{3}\right)\left(z_{4}-z_{1}\right)} \in \mathbb{C}
$$

\Longrightarrow Cross ratio for every interior edge $X: E \rightarrow \mathbb{C} \quad\left(\right.$ Note: $\left.X_{i j}=X_{j i}\right)$

Around each interior vertex i

$$
\begin{align*}
& 1=\prod_{j=1}^{n} x_{i j} \tag{1}\\
& 0=\left(x_{i 1}\right)+\left(x_{i 1} x_{i 2}\right)+\cdots+\left(x_{i 1} x_{i 2} \ldots x_{i n}\right) \tag{2}
\end{align*}
$$

DELAUNAY CROSS RATIO SYSTEM

DEFINITION

Given $M=(V, E, F)$ a triangulation of a closed surface, a cross ratio system is a map $X: E \rightarrow \mathbb{C}$ such that for every vertex i

$$
\begin{aligned}
& 1=\prod_{j=1}^{n} x_{i j} \\
& 0=\left(x_{i 1}\right)+\left(x_{i 1} x_{i 2}\right)+\cdots+\left(X_{i 1} x_{i 2} \ldots X_{i n}\right)
\end{aligned}
$$

DEFINITION

A Delaunay angle structure is an assignment $\Theta: E \rightarrow[0, \pi)$ satisfying
1 For every vertex $i, \sum_{j} \Theta_{i j}=2 \pi$.
$2 \sum_{i=1}^{n} \Theta_{i j}>2 \pi$ for any closed loop on the dual graph bounding more than one face.
$P(\Theta)$ the space of all cross ratio systems X with $\operatorname{Arg} X \equiv \Theta$.
i.e. space of circle patterns with prescribed intersection angles

- Each Delaunay cross ratio system induces a complex projective structure on M together with a circle pattern by gluing circumdisks.
- It yields

$$
P(\Theta) \xrightarrow{f} P(M) \xrightarrow{\pi} \mathcal{T}(M)
$$

■ How does $P(\Theta)$ look like? Manifold? Dimension? $\pi \circ f: P(\Theta) \rightarrow \mathcal{T}(M)$?

ELEMENTS OF $P(\Theta)$

$\Theta \equiv \pi / 3$ on a triangulated torus.

ELEMENTS OF $P(\Theta)$

$\Theta \equiv \pi / 3$ on a triangulated torus.

ELEMENTS OF $P(\Theta)$

$\Theta \equiv \pi / 3$ on a triangulated torus.

How does $P(\Theta)$ look like? Manifold? Dimension? $\pi \circ f: P(\Theta) \rightarrow \mathcal{T}(M)$?

CONJECTURE (KOJIMA-MiZUSHIMA-TAN (2003))

The projection $\pi \circ f: P(\Theta) \rightarrow \mathcal{T}(M)$ is a homeomorphism.

- (Mizushima 2000) One-vertex triangulation on torus: $P(\Theta)$ homeomorphic to \mathbb{R}^{2}.
- (Kojima, Mizushima, and Tan 2003) General triangulation: Neighbourhood around the Euclidean Torus in $P(\Theta)$ is homeomorphic to \mathbb{R}^{2}. $(g=1$, similar for $g>1)$
■ (Schlenker,Yarmola 2018) $\pi \circ f$ is proper ($g>1$)

Analogous to Thurston's grafting construction via measured laminations

MAIN RESULTS (FOR TORUS $g=1$)

(L. 2019)

THEOREM (A)

Fixing any triangulation and Delaunay angle structure Θ on a torus,
$1 P(\Theta)$ is a real analytic surface homeomorphic to \mathbb{R}^{2}.
$2 f: P(\Theta) \rightarrow P(M)$ is embedding
3 The holonomy map is embedding

$$
\text { hol }: P(\Theta) \rightarrow \operatorname{Hom}\left(\pi_{1}(M), \operatorname{PSL}(2, \mathbb{C})\right) / / \operatorname{PSL}(2, \mathbb{C})
$$

THEOREM (B)

The projection $\pi \circ f: P(\Theta) \rightarrow \mathcal{T}(M)$ is a homeomorphism.

MAIN RESULTS (FOR TORUS $g=1$)

(L. 2022) Symplectic structure on $P(\Theta)$.

$M_{g, n}$ denotes a genus- g surface with n punctures, where $n=|V|$.

THEOREM (C)

The pullback of the symplectic forms $h^{*} \Omega_{W P}=f^{*} \Omega_{G}$ coincides and are non-degenerate.

There is an induced real symplectic form on $P(\Theta)$.

Compare with Thurston's grafting

Theorem (Thurston)

Gr: $\mathcal{T}\left(M_{g}\right) \times M L\left(M_{g}\right) \rightarrow P\left(M_{g}\right)$ is a homeomorphism.
Theorem (Scannell-Wolf (2002))
Fix $\lambda \in M L\left(M_{g}\right)$, the map $g r_{\lambda}: \mathcal{T}\left(M_{g}\right) \rightarrow \mathcal{T}\left(M_{g}\right)$ is a homeomorphism.

Outline

- Motivation: Discrete holomorphic functions
- Classical theory: Complex projective structures
- Main results: Deformation space of circle patterns

■ Key ingredients: Graph Laplacian (Cotangent weights), Harmonic conjugates
■ Open questions

Graph Laplacian (cotangent weights)

$G=(V, E, F)$ cell decomposition of a surface, $c: E \rightarrow \mathbb{R}_{\geq 0}$, with $c_{i j}=c_{j i}$.

Definition

$u: V \rightarrow \mathbb{R}$ is a discrete harmonic function on G if around each interior vertex $i \in V$

$$
\sum_{j} c_{i j}\left(u_{j}-u_{i}\right)=0
$$

PROPOSITION

$u: V \rightarrow \mathbb{R}$ is discrete harmonic if and only if there exists $v: F \rightarrow \mathbb{R}$ such that

$$
v_{l e f t(\overrightarrow{i j})}-v_{\text {right }(\overrightarrow{i j})}=c_{i j}\left(u_{j}-u_{i}\right)
$$

where left $(\overrightarrow{i j})$ is the left face of the oriented edge $\overrightarrow{i j}$.
Check: The function v is a discrete harmonic function on the dual cell decomposition G^{*} with weights $c^{*}:=\frac{1}{c}$.

Graph Laplacian (cotangent weights)

Circle patterns $\quad \Longrightarrow \quad$ radii of circles $R: F \rightarrow \mathbb{R}$
1-parameter family of circle patterns $\Longrightarrow \quad R_{t}: F \rightarrow \mathbb{R}$

PROPOSITION

$v:=\frac{d}{d t} \log R_{t}$ is a discrete harmonic function on G^{*} where $c_{i j}=\cot \angle j k i+\cot \angle i l j$.

Note: No non-constant harmonic functions on Tori.
We consider harmonic 1-forms.

A discrete 1-form is a function $\omega: \vec{E} \rightarrow \mathbb{R}$ such that $\omega_{j i}=-\omega_{i j}$. It is closed on G if $\forall \phi \in F, \sum_{i j \in \partial \phi} \omega_{i j}=0$

DEFINITION

A closed discrete 1-form ω is harmonic if around each vertex $i \in V$

$$
\sum_{j} c_{i j} \omega_{i j}=0
$$

PROPOSITION

A closed discrete 1-form ω on G is harmonic if and only if there exists a closed discrete 1 -form η on G^{*} such that

$$
\eta_{i j}=c_{i j} \omega_{i j} .
$$

We call $* \omega:=\eta$ harmonic conjugate of ω.
Recall: Harmonic 1-forms on Riemann surfaces are parameterized by periods

$$
(A, B)=\left(\sum_{\gamma_{1}} \omega, \sum_{\gamma_{2}} \omega\right)
$$

Harmonic conjugate on periods

For each triangulated affine tori, we define an action of harmonic conjugate on periods

$$
*_{G}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

1 Given any $(A, B) \in \mathbb{R}^{2}$, find discrete harmonic 1-form ω such that

$$
(A, B)=\left(\sum_{\gamma_{1}} \omega, \sum_{\gamma_{2}} \omega\right)
$$

2. Compute periods of the harmonic conjugate

$$
(\tilde{A}, \tilde{B})=\left(\sum_{\gamma_{1}} * \omega, \sum_{\gamma_{2}} * \omega\right)
$$

$3 *_{G}(A, B):=(\tilde{A}, \tilde{B})$. Known: $*_{G}$ is an isomorphism.
The period space is equipped with an inner product where $|(A, B)|^{2}$ is the Dirichlet energy of the corresponding smooth harmonic 1 -form.
Note: smooth harmonic conjugate $*$ is an isometry, i.e. $\|*\|=1$.

PROPOSITION

For non-Euclidean affine torus, $\left\|*_{G}^{-1}\right\|<1$.

Outline

- Motivation: Discrete holomorphic functions
- Classical theory: Complex projective structures
- Main results: Deformation space of circle patterns

■ Key ingredients: Graph Laplacian (Cotangent weights), Harmonic conjugates
■ Open questions

Open questions for Tori

1 Algorithm for Thm (B): Fixing a triangulation and intersection angle Θ, how to find the complex projective structure and circle pattern for any marked conformal structure?

2 Deformation space of circle patterns diffeomorphic to the Teichmuller space near Euclidean circle packing?

Further connections

Why deformation space of circle patterns?
1 Discrete holomorphic functions
2 Classical Teichmuller theory
3 Discrete surface theory
4 Dimers and Circle patterns

WeIErstrass representation

Osculating Möbius transformation $A_{h}: F \rightarrow S L(2, \mathbb{C}) /\{ \pm /\}$

CMC-1 surfaces in \mathbb{H}^{3} (L.2020)

Good discretization $=$ Rich in mathematical structures

Thank you!

W.Y. Lam. Quadratic differentials and circle patterns on complex projective tori. Geom. Topol. (2019)

