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e A symplectic form on X is a 2-form w € Q?(X) s.t.

dw =0, and w A w nowhere vanishing.

e Given a€ H?*(X;R), consider the spaces
S2(X) := {symplectic w with [w] = a}
S.,(X) := path-connected component of Sp.j(X) that contains w.

Question

(1) Is S5(X) nonempty? (Existence of symplectic structures.)

(2) Is S,(X) path-connected? (Uniqueness of symplectic structures up to
isotopies.)

(3) Is S, (X) simply-connected? (Uniqueness of isotopies.)

o Powerful techniques: pseudo holomorphic curves, Seiberg-Witten theory.

@ (1), (3) partly answered. (2) wide open.
@ One goal today: Use Seiberg-Witten theory to study (3).
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Diff(X) := {diffeomorphisms on X}
Diff(X, [w]) := {fe Diff(X, [w]) | f*[w] = [w]}
Symp(X,w) := {symplectormorphisms on (X,w)}
Question
(1) Is the inclusion i: Symp(X,w) — Diff(X, [w]) a homotopy equivalence?
(2) Is the map i, : w.(Symp(X,w)) — m.(Diff(X, [w])) injective or surjective?

o Note that 7, (Diff(X, [w])) = 7,(Diff(X)) for r > 1.
@ By Moser's argument, we have a long exact sequence
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e Given (X,w), we consider the following groups

Diff(X) := {diffeomorphisms on X}
Diff(X, [w]) := {fe Diff(X, [w]) | f*[w] = [w]}
Symp(X,w) := {symplectormorphisms on (X,w)}
Question
(1) Is the inclusion i: Symp(X,w) — Diff(X, [w]) a homotopy equivalence?
(2) Is the map i, : w.(Symp(X,w)) — m.(Diff(X, [w])) injective or surjective?

o Note that 7, (Diff(X, [w])) = 7,(Diff(X)) for r > 1.
@ By Moser's argument, we have a long exact sequence

+ o (S, (X)) >m(Symp(X,w)) 5 my (Diff(X))
— (S0 (X)) = To(Symp(X, w)) —%> mo(Diff(X, [w]))
@ So Question (2) is a refined version of the uniqueness problem of isotopies.
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understood. E.g., CP?, $? x §?, CP°#nCP? with n <5 (Gromov,
Abreu-McDuff, Anjos, Lalonde-Pinsonnault, Evans).

@ Even less is known about the topology of Diff(X).

@ We don't know a single closed 4-manifold X for which the homotopy type of
Diff(X) is fully understood.

Conjecture (Smale conjecture in dimension 4)
Diff(S*) ~ O(5). Equivalently, Diff} (D*) ~ «

Theorem (Watanabe (2018))
m(Diff5 (D*) ® Q # 0 for i = 1,4,8.

@ So it is not feasible to study iy : m.(Symp(X,w)) — m(Diff(X)) by finding
the homotopy type of Symp(X,w) and Diff(X).
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The Dehn-Seidel twist

e Want to study i,y : m(Symp(X,w)) — m(Diff(X, [w])).

@ Expectation: Diff(X, [w]) is essentially “larger” than Symp(X,w).
@ Open question: Is ip 4 always surjective/always not surjective?

@ Is ip s always injective? No!

Theorem (Seidel (1997))

Let (X,w) be a minimal and irrational symplectic 4-manifold with by (X) = 0 and
dim(H2(X;Z/2)) = 3. Suppose X contains an embedded Lagrangian 2-sphere S.
Then square of the Dehn twist along S gives a nonzero element in the kernel i .
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The Dehn-Seidel twist

e Want to study i,y : m(Symp(X,w)) — m(Diff(X, [w])).
@ Expectation: Diff(X, [w]) is essentially “larger” than Symp(X,w).
@ Open question: Is ip 4 always surjective/always not surjective?

@ Is ip s always injective? No!

Theorem (Seidel (1997))

Let (X,w) be a minimal and irrational symplectic 4-manifold with by (X) = 0 and
dim(H2(X;Z/2)) = 3. Suppose X contains an embedded Lagrangian 2-sphere S.
Then square of the Dehn twist along S gives a nonzero element in the kernel i .

@ Seidel’s proof uses deep results in quantum cohomology ring QH(X) and the
Floer homomlogy HF(¢) for ¢ € Symp(X,w). It applies to large family of
symplectic manifolds. (e.g. complete intersections in CP"*2 other than CP?
or CP* x CP')
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Non-symplecitic loop of diffeomorphisms

Theorem (Smirnov (2020))

For many complex surfaces (X,w) (including hypersurfaces in CP* with degree
# 1 or4), the map iy 5 : m1(Symp(X,w)) — m1(Diff(X)) is not surjective.
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Theorem (L. (2021))

Let (X,w) be any symplectic 4-manifold that contains a smoothly embedded S*
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o l.e., whenever there is a smoothly embedded 2-sphere (not necessarily
Lagrangian or symplectic) of self-intersection -1 or -2, there is a loop of

diffeomorphism which can not be deformed to loop of symplectomorphisms.
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Non-symplecitic loop of diffeomorphisms

Theorem (Smirnov (2020))

For many complex surfaces (X,w) (including hypersurfaces in CP* with degree
# 1 or4), the map iy 5 : m1(Symp(X,w)) — m1(Diff(X)) is not surjective.

@ The proof uses the family Seiberg-Witten theory (Donaldson, Ruberman,
Li-Liu, Nakamura, Baraglia-Konno....) and builds on previous work of
Kronheimer.

Theorem (L. (2021))

Let (X,w) be any symplectic 4-manifold that contains a smoothly embedded S*
with self-intersection —1 or —2. Then iy s is not surjective.

o l.e., whenever there is a smoothly embedded 2-sphere (not necessarily
Lagrangian or symplectic) of self-intersection -1 or -2, there is a loop of
diffeomorphism which can not be deformed to loop of symplectomorphisms.

@ The case of self-intersection —1 confirms a conjectured by McDuff.

@ New ingredient: a new gluing formula for the family Seiberg-Witten invariant.
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Fragile loops vs. robust loops of symplectic forms

- = my (Symp(X,w)) s 7y (DIFF(X)) 255 7y (Spy (X))

2 mo(Symp(X, w)) =% mo(Diff(X, [w]))

@ Assume (X,w) contains an Lagragian 2-sphere S and satisfies the
homological conditions of Seidel’s theorem. Then 3 0 # 72 € ker ig .

e Kronheimer found [a], [8] € m1(S.1(X)) s.t. d([a]) = o([B]) = 72

= T§.
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Fragile loops vs. robust loops of symplectic forms

- = my (Symp(X,w)) s 7y (DIFF(X)) 255 7y (Spy (X))

2 mo(Symp(X, w)) =% mo(Diff(X, [w]))

Assume (X,w) contains an Lagragian 2-sphere S and satisfies the
homological conditions of Seidel’s theorem. Then 3 0 # 72 € ker ig .
Kronheimer found [o], [8] € m1(S[.,1 (X)) s.t. d([a]) = o([8]) = 72.

For any r > 0, Kronheimer found examples with 72,1 (Sp.1(X)) # 0.

i1,% not surjective (our theorem) == 3 a loop [y] € ker d < 71 (S1(X)).
When S is Lagrangian, [v] = [«] — [B].
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i1,% not surjective (our theorem) == 3 a loop [y] € ker d < 71 (S1(X)).
When S is Lagrangian, [v] = [«] — [B].
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Fragile loops vs. robust loops of symplectic forms

- = my(Symp(X,w)) s 7y (DIFF(X)) 255 7y (S (X))
% mo(Symp(X, w)) 2%> 7o (Diff(X, [w]))

Assume (X,w) contains an Lagragian 2-sphere S and satisfies the
homological conditions of Seidel’s theorem. Then 3 0 # 72 € ker ig .
Kronheimer found [o], [8] € m1(S[.,1 (X)) s.t. d([a]) = o([8]) = 72.

For any r > 0, Kronheimer found examples with 72,1 (Sp.1(X)) # 0.

i1,% not surjective (our theorem) == 3 a loop [y] € ker d < 71 (S1(X)).
When S is Lagrangian, [v] = [«] — [B].

Essential difference: When we perturb [w], a, § are fragile but  is robust.

v -
& Qo+ (X) with /Svu >0
RCESD) Qo (X) with wlg = 0

: Q[W—](X) with /w_ <0
i S
(YMSC Topology Seminar) ;
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The space of symplectic forms is not simply-connected

Corollary

Let (X,w) be a symplectic 4-manifold that contain a smoothly embedded S* with
self-intersection —2 or —1. Then 71 (Sp.1(X)) # 0.
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Corollary

Let (X,w) be a symplectic 4-manifold that contain a smoothly embedded S* with
self-intersection —2 or —1. Then 71 (Sp.1(X)) # 0.

@ In the case of —1-sphere, we can prove a stronger result:

Theorem (L. (2021))

Let (X,w) be a non-minimal symplectic 4-manifold with b (X) # 3. Then
m1(S(X)) # 0. (S(X) denotes the space of all symplectic forms.)
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Let (X,w) be a symplectic 4-manifold that contain a smoothly embedded S* with
self-intersection —2 or —1. Then 71 (Sp.1(X)) # 0.

@ In the case of —1-sphere, we can prove a stronger result:

Theorem (L. (2021))

Let (X,w) be a non-minimal symplectic 4-manifold with b (X) # 3. Then
m1(S(X)) # 0. (S(X) denotes the space of all symplectic forms.)

@ X is non-minimal means that X = X’#@%
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The space of symplectic forms is not simply-connected

Corollary

Let (X,w) be a symplectic 4-manifold that contain a smoothly embedded S* with
self-intersection —2 or —1. Then 71 (Sp.1(X)) # 0.

@ In the case of —1-sphere, we can prove a stronger result:

Theorem (L. (2021))

Let (X,w) be a non-minimal symplectic 4-manifold with b (X) # 3. Then
m1(S(X)) # 0. (S(X) denotes the space of all symplectic forms.)

@ X is non-minimal means that X = X’#@%

@ These loops are are contractible in the space of non-degenerate 2-forms.
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The space of symplectic forms is not simply-connected

Corollary

Let (X,w) be a symplectic 4-manifold that contain a smoothly embedded S* with
self-intersection —2 or —1. Then 71 (Sp.1(X)) # 0.

@ In the case of —1-sphere, we can prove a stronger result:

Theorem (L. (2021))

Let (X,w) be a non-minimal symplectic 4-manifold with b (X) # 3. Then
m1(S(X)) # 0. (S(X) denotes the space of all symplectic forms.)

. . ——2
@ X is non-minimal means that X =~ X'#CP".
@ These loops are are contractible in the space of non-degenerate 2-forms.

@ The condition b3 (X) # 3 is related to the wall-crossing phenomena for family
Seiberg-Witten invariants.
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[11. Non-symplectic families of smooth 4-manifolds
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Loops in Diff(X) < Families of X over 2

o Given v : S! — Diff(X), we have a diffeomorphism

7 :S' x X — S x X defined by 5(t,x) = (t,7(t)x).
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Loops in Diff(X) < Families of X over 2

Given 7 : S — Diff(X), we have a diffeomorphism

7 :S' x X — S x X defined by 5(t,x) = (t,7(t)x).

o We form the bundle X — E, 2, B by setting

B=5% E,=(D*xX)usy(D*x X).

We treat E, as a family {Xp}rep of 4-manifolds, where X}, = pL(b).
@ ~ is homotopic to v/ <= E, is isomorphic to E,s as bundles.

[7] € Image(m1 (Symp(X,w)) Lx, m1(Diff(X))) <
There is a fiberwise symplectic structure {wp}pesz © Sy (X) on {Xp}pes.
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Loops in Diff(X) < Families of X over 2

Given 7 : S — Diff(X), we have a diffeomorphism

7 :S' x X — S x X defined by 5(t,x) = (t,7(t)x).

o We form the bundle X — E, 2, B by setting

B=5% E,=(D*xX)usy(D*x X).

We treat E, as a family {Xp}rep of 4-manifolds, where X}, = pL(b).
@ ~ is homotopic to v/ <= E, is isomorphic to E,s as bundles.

[7] € Image(m1 (Symp(X,w)) Lx, m1(Diff(X))) <
There is a fiberwise symplectic structure {wp}pesz © Sy (X) on {Xp}pes.

@ To show iy 4 is not surjective, it suffices to establish non-symplectic families
over &°.
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The ADE singularities

@ An ADE singularity (Du Val singularity) is an isolated surface singularity
locally modelled on ¥ = C2/I. Here I is a finite subgroup of SU(2) = Sp(1),
acting as the left multiplication on H = C2.

(YMSC Topology Seminar) 13/21



The ADE singularities

@ An ADE singularity (Du Val singularity) is an isolated surface singularity
locally modelled on ¥ = C2/I. Here I is a finite subgroup of SU(2) = Sp(1),
acting as the left multiplication on H = C2.

@ Such singularity has a unique minimal resolution r: PR 3

(YMSC Topology Seminar) 13/21



The ADE singularities

@ An ADE singularity (Du Val singularity) is an isolated surface singularity
locally modelled on ¥ = C2/I. Here I is a finite subgroup of SU(2) = Sp(1),
acting as the left multiplication on H = C2.

@ Such singularity has a unique minimal resolution r: PR 3
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The ADE singularities

@ An ADE singularity (Du Val singularity) is an isolated surface singularity
locally modelled on ¥ = C2/I. Here I is a finite subgroup of SU(2) = Sp(1),
acting as the left multiplication on H = C2.

@ Such singularity has a unique minimal resolution r: PR 3

e r~1(0) is a union of (—2)-spheres. They intersect each other following the
shape of the Dynkin diagram of ADE type.

@ Kronheimer proved that % is an ALE space (i.e. it admits a hyper-K&hler
metric that approaches the Euclidian metric at infinity.)

(YMSC Topology Seminar) 13/21



The ADE families

(YMSC Topology Seminar) 14 /21



The ADE families

o Let B={ai+ bj+ cke H|a*+ b* + @ = 1} = $°. Each point b e B gives a
complex structure Jp on H, with Jp(h) = h- b.
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The ADE families

o Let B={ai+ bj+ cke H|a*+ b* + @ = 1} = $°. Each point b e B gives a
complex structure Jp on H, with Jp(h) = h- b.
@ Take the product family B x ¥. Resolve the fiber {b} x ¥ using Jp. This

gives a nontrivial family PR E, — B
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The ADE families

Let B={ai+ bj+ cke H|a®+ b> + & = 1} = S?. Each point be B gives a
complex structure J, on H, with Jy(h) = h- b.

Take the product family B x ¥. Resolve the fiber {b} x ¥ using J,. This
gives a nontrivial family PR E, — B

Let X be a 4-manifold that contain an ADE configuration of smoothly
embedded —2-spheres. (E.g. X'is a minimal resolution an algebraic surface
with an ADE singularity). Then an open neighborhood of these spheres is

diffeomorphic to ¥. And X = ¥ U (X\X).
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The ADE families

o Let B={ai+ bj+ cke H|a*+ b* + @ = 1} = $°. Each point b e B gives a
complex structure J, on H, with Jy(h) = h- b.

@ Take the product family B x ¥. Resolve the fiber {b} x ¥ using Jp. This
gives a nontrivial family PR E, — B

@ Let X be a 4-manifold that contain an ADE configuration of smoothly
embedded —2-spheres. (E.g. X'is a minimal resolution an algebraic surface
with an ADE singularity). Then an open neighborhood of these spheres is
diffeomorphic to ¥. And X = ¥ U (X\X).

o We can form the family E= E; U (B x (X\L)), called an ADE family.
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The ADE families

o Let B={ai+ bj+ckeH|a*+ b?>+ 2 =1} = S%. Each point b€ B gives a
complex structure Jp on H, with Jp(h) = h- b.

@ Take the product family B x ¥. Resolve the fiber {b} x ¥ using Jp. This
gives a nontrivial family RN E, — B

@ Let X be a 4-manifold that contain an ADE configuration of smoothly
embedded —2-spheres. (E.g. X'is a minimal resolution an algebraic surface
with an ADE singularity). Then an open neighborhood of these spheres is

diffeomorphic to ¥. And X = ¥ U (X\X).
@ We can form the family E = E; u (B x (X\X)), called an ADE family.

Theorem (L.)
Let {wp} be a family of minimal symplectic structure on an ADE family
X < E — 5. Then at least one of the following two situation happens:
@ Foranyae Hz(i; Z) with a-a= —2, the function $*> — R defined by
b — {[wp], ay takes both positive and negative values. Or,
o b*(X) =3, c1(K) is torsion, and {wp} is a winding family.
(Here K is the canonical bundle.) In particular, the ADE family never admits

minimal fiberwise symplectic structures in a constant cohomology class.
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@ A similar idea works for blow up. Take xe X. Then

{orientation compatible almost complex structure at T, X} ~ S°.
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fixing an isomorphism T, X =~ H.
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{orientation compatible almost complex structure at T, X} ~ S°.

@ A specific family of almost complex structure {Jy}nes2 can be obtained by
fixing an isomorphism T, X =~ H.

@ We blow up the product family S? x X fiberwisely at x, using {J,}. This gives
the blow up family (X#CP’) < E — S
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@ A specific family of almost complex structure {Jy}nes2 can be obtained by
fixing an isomorphism T, X =~ H.

@ We blow up the product family S? x X fiberwisely at x, using {J,}. This gives
the blow up family (X#CP’) < E — S

Theorem (L.)

The blown-up family (X#(C_IP’z) < E— S? doesn't admit a fiberwise symplectic
structure {wp}pese Such that:
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unless the fiber is rational or ruled with b} = 1.)
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{orientation compatible almost complex structure at T, X} ~ S°.

@ A specific family of almost complex structure {Jy}nes2 can be obtained by
fixing an isomorphism T, X =~ H.

@ We blow up the product family S? x X fiberwisely at x, using {J,}. This gives
the blow up family (X#CP’) < E — S

Theorem (L.)

The blown-up family (X#(C_IP’z) < E— S? doesn't admit a fiberwise symplectic
structure {wp}pese Such that:
@ (ci(K),D) = +1. D = CP* is the exceptional divisor. (Automatically satisfied
unless the fiber is rational or ruled with b} = 1.)

Q [ws] € HZ(X; R) is independent with b.
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@ A similar idea works for blow up. Take xe X. Then

{orientation compatible almost complex structure at T, X} ~ S°.

@ A specific family of almost complex structure {Jy}nes2 can be obtained by
fixing an isomorphism T, X =~ H.

@ We blow up the product family S? x X fiberwisely at x, using {J,}. This gives
the blow up family (X#CP’) < E — S

Theorem (L.)
The blown-up family (X#(C_IP’z) < E— S? doesn't admit a fiberwise symplectic

structure {wp}pese Such that:

@ (ci(K),D) = +1. D = CP* is the exceptional divisor. (Automatically satisfied
unless the fiber is rational or ruled with b} = 1.)

Q [ws] € HZ(X; R) is independent with b.
Furthermore, if by (X) # 3, then condition (2) can be dropped.
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Family blow up at a single point

@ A similar idea works for blow up. Take xe X. Then

{orientation compatible almost complex structure at T, X} ~ S°.

@ A specific family of almost complex structure {Jy}nes2 can be obtained by
fixing an isomorphism T, X =~ H.

@ We blow up the product family S? x X fiberwisely at x, using {J,}. This gives
the blow up family (X#CP°) < E — S

Theorem (L.)
The blown-up family (X#(C_IP’z) < E— S? doesn't admit a fiberwise symplectic

structure {wp}pese Such that:

@ (ci(K),D) = +1. D = CP* is the exceptional divisor. (Automatically satisfied
unless the fiber is rational or ruled with b} = 1.)

Q [ws] € HZ(X; R) is independent with b.
Furthermore, if by (X) # 3, then condition (2) can be dropped.

@ McDuff conjectured that a similar result holds in all dimensions.



IV. A gluing formula for family Seiberg-Witten invariants.
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The family Seiberg-Witten invariants

e Consider a smooth fiber bundle X — E 5 B.
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The family Seiberg-Witten invariants

o Consider a smooth fiber bundle X — E % B.
@ Pick a family Spin-structure sg. Choose metrics {gp}pes and perturbations
{1p}pep on each fiber X,. Here up € Q2(X)).
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@ Pick a family Spin-structure sg. Choose metrics {gp}pes and perturbations
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o We study the Seiberg-Witten equations on the fiber X}
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o Consider the parametrized moduli space

M = {(b, Ap, Pb) | (Ab, Pb) solves the S.W. eqs on Xp}/gauge transformations.

@ For generic choice of ({gb}, {tn}), M is a compact, smooth manifold of
dimension d(sg).
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The family Seiberg-Witten invariants

o Consider a smooth fiber bundle X — E % B.

@ Pick a family Spin-structure sg. Choose metrics {gp}pes and perturbations
{1p}pep on each fiber X,. Here up € Q2(X)).

o We study the Seiberg-Witten equations on the fiber X}

FXE = p N dpd})o + iks, [Z)Zb(?b =0.

o Consider the parametrized moduli space

M = {(b, Ap, Pb) | (Ab, Pb) solves the S.W. eqs on Xp}/gauge transformations.

@ For generic choice of ({gb}, {tn}), M is a compact, smooth manifold of
dimension d(sg).

@ We focus on the particular case d(sg) = 0. Then we define the family
Seiberg-Witten invariant

FSWe(E, sg) := #M e Z.
Here ¢ € [B, b (¥~1] is the “chamber” for our choice of ({g}, {1in}).
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The family Seiberg-Witten invariants

o Consider a smooth fiber bundle X — E % B.

@ Pick a family Spin-structure sg. Choose metrics {gp}pes and perturbations
{1p}pep on each fiber X,. Here up € Q2(X)).

o We study the Seiberg-Witten equations on the fiber X}

FXE = p N dpd})o + iks, [Z)Zb(?b =0.

o Consider the parametrized moduli space

M = {(b, Ap, Pb) | (Ab, Pb) solves the S.W. eqs on Xp}/gauge transformations.

@ For generic choice of ({gb}, {tn}), M is a compact, smooth manifold of
dimension d(sg).

@ We focus on the particular case d(sg) = 0. Then we define the family
Seiberg-Witten invariant

FSWe(E, sg) := #M e Z.

Here ¢ € [B, b (¥~1] is the “chamber” for our choice of ({g}, {1in}).
@ When B = point, we denote FSW¢(E, sg) by SW(X, sx).
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Taubes’ vanishing theorem

@ Assume (X,w) is a symplectic 4-manifold.
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Taubes’ vanishing theorem

@ Assume (X,w) is a symplectic 4-manifold.

@ We have a canonical Spin®-structure s, with ¢i(s;) = —c1(K).

Theorem (Taubes)
Assuming by (X) > 1, then we have
Q@ SW(X,s)) = 1.
Q SW(X;s) =0 if [w] - ci(s) < —[w] - ar(K)
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Taubes’ vanishing theorem

@ Assume (X,w) is a symplectic 4-manifold.

@ We have a canonical Spin®-structure s, with ¢i(s;) = —c1(K).

Theorem (Taubes)
Assuming by (X) > 1, then we have
Q@ SW(X,s)) = 1.
Q SW(X;s) =0 if [w] - ci(s) < —[w] - ar(K)

@ Proved by setting the perturbation y = —rw — iFXt for r> 0.
0
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@ Assume (X,w) is a symplectic 4-manifold.

@ We have a canonical Spin®-structure s, with ¢i(s;) = —c1(K).

Theorem (Taubes)
Assuming by (X) > 1, then we have
Q@ SW(X,s)) = 1.
Q SW(X;s) =0 if [w] - ci(s) < —[w] - ar(K)

@ Proved by setting the perturbation y = —rw — iFXt for r> 0.
0

o Consider a family X — E— B.
@ Suppose {Xp} carries a fiberwise symplectic structure {wp}.
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@ Assume (X,w) is a symplectic 4-manifold.

@ We have a canonical Spin®-structure s, with ¢i(s;) = —c1(K).

Theorem (Taubes)
Assuming by (X) > 1, then we have
Q@ SW(X,s)) = 1.
Q SW(X;s) =0 if [w] - ci(s) < —[w] - ar(K)

Proved by setting the perturbation = —nv — iFXt for r> 0.
0

Consider a family X — E — B.

Suppose {Xp} carries a fiberwise symplectic structure {wp}.

Set the perturbation pp = —rwp — iF), . When r>» 0, the chamber &, is
0,b

called the “symplectic chamber.”

(YMSC Topology Seminar) 18/21



Taubes’ vanishing theorem

@ Assume (X,w) is a symplectic 4-manifold.

@ We have a canonical Spin®-structure s, with ¢i(s;) = —c1(K).

Theorem (Taubes)
Assuming by (X) > 1, then we have
Q@ SW(X,s)) = 1.
Q SW(X;s) =0 if [w] - ci(s) < —[w] - ar(K)

Proved by setting the perturbation = —nv — iFXt for r> 0.
0

Consider a family X — E — B.

Suppose {Xp} carries a fiberwise symplectic structure {wp}.

Set the perturbation pp = —rwp — iF), . When r>» 0, the chamber &, is
0,b
called the “symplectic chamber.”

Theorem (Taubes)
FSWe,, (E,sg) = 0 if for any b e B we have [wp] - c1(sg|x,) < —[ws] - c1(K) J
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A gluing formula for FSW (1)
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o X <— E — B has a decomposition E; Ugxy E>.
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A gluing formula for FSW (1)

@ Our setting is as follows:
o X <— E — B has a decomposition E; Ugxy E>.

e Here X; — E; — B is general family of manifold X; with boundary Y.

o E; is the product family B x X, of manifold X, with boundary —Y. We
assume bl (Xz) > 1.

(YMSC Topology Seminar)

19/21



A gluing formula for FSW (1)

@ Our setting is as follows:
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e Here X; — E; — B is general family of manifold X; with boundary Y.
o E; is the product family B x X, of manifold X, with boundary —Y. We
assume bl (Xz) > 1.
e We assume 1(B) acts trivially on the homology of the fibers.
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A gluing formula for FSW (1)

@ Our setting is as follows:
o X <— E — B has a decomposition E; Ugxy E>.
e Here X; — E; — B is general family of manifold X; with boundary Y.

o E; is the product family B x X, of manifold X, with boundary —Y. We
assume b (X2) > 1.

e We assume 1(B) acts trivially on the homology of the fibers.
@ By removing small balls, we obtain a family cobordism

Wy = E\(Bx DY : S > Y

and single cobordism
Wa := Xo\D*: Y — S8
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A gluing formula for FSW (1)

@ Our setting is as follows:
o X <— E — B has a decomposition E; Ugxy E>.
e Here X; — E; — B is general family of manifold X; with boundary Y.
o E; is the product family B x X, of manifold X, with boundary —Y. We
assume b (X2) > 1.
e We assume 1(B) acts trivially on the homology of the fibers.

@ By removing small balls, we obtain a family cobordism
Wy = E\(Bx DY : S > Y
and single cobordism

Wa := Xo\D*: Y — S8

o Given (family) Spin-structures sg, on E; and sx, on X;. We get
cobordism-induced maps
HM, (WA, sg,) : HMy(S%) — HM,(Y)
AN (Wa, sx,) : HM ($%) — HM' (Y)
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A gluing formula for FSW (1)
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A gluing formula for FSW (1)

Theorem (Kronheimer-Mrowka, L.)

One has Y, FSW(E, s) = (HM, (Wi, sg,)(1) , AM (Wa, 5x,)(1)). Here 1 and 1
are canonical generators of the monopole Floer (co)homology of S3. The sum is
taken over all family Spin©-structures s on E that satisfies s|g, = sg,,

s|e, = p*(sx,), d(sg) = 0.
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A gluing formula for FSW (1)

Theorem (Kronheimer-Mrowka, L.)

One has 3, FSW(E, s) = (HMy (W4, s5,)(1) , AM" (Wa, sx,)(1)). Here1 and 1
are canonical generators of the monopole Floer (co)homology of S3. The sum is
taken over all family Spin©-structures s on E that satisfies s|g, = sg,,

s|g, = p*(sx,), d(sg) = 0.

Corollary

Assume Y is an L-space and by (X2) > 1. Given a family Spin°-stricture sg on E
and a Spin€©-structure sx on X that satisfy the conditions
sele, = p*(sx|x,) and d(sg) = d(sx) = 0. Then we have

FSW(E, sg) = {Canme (— Ind(D(E, 5£))), [B]) - SW(X, 5x)

if by (X1) = 0. We have FSW(E, sg) = 0 if by (X1) # 0.
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Assume Y is an L-space and by (X2) > 1. Given a family Spin°-stricture sg on E
and a Spin€©-structure sx on X that satisfy the conditions
sele, = p*(sx|x,) and d(sg) = d(sx) = 0. Then we have

FSW(E, sg) = {Canme (— Ind(D(E, 5£))), [B]) - SW(X, 5x)

if by (X1) = 0. We have FSW(E, sg) = 0 if by (X1) # 0.

@ We use this formula to compute FSW of ADE families and blow up families
and use Taubes' result to show that they have no symplectic structures.
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Thank you for listening.
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