Connectivity of the Space of Pointed Hyperbolic Surfaces

> Sangsan (Tee) Warakkagun สร้างสรรค์ วรัคคกุล

> > YMSC Topology Seminar April 26, 2022

Outline

 The set H²_● of pointed hyperbolic surfaces The space H²_● Hyperbolic surfaces Understanding the geometry of a surface

2 The Topology on \mathcal{H}^2_{ullet}

The pointed Gromov-Hausdorff topology Relationship with the Chabauty topology on $Sub(PSL_2(\mathbb{R}))$

3 Sketch of Results

Continuous paths in \mathcal{H}^2_{\bullet} Global path-connectivity Local path-connectivity At (X, p), where X is of the first kind At (\mathbb{H}^2, z_0)

Definition

- $\mathcal{H}^2_{\bullet}:= \ \ \mbox{the set of (isometry classes) of hyperbolic surfaces with a }$ basepoint
 - $= \ \ \{(X,p): X \text{ a hyperbolic surface}, p \in X\}/\sim$

where $(X, p) \sim (X', p')$ if there is a basepoint-preserving isometry between them. We equip \mathcal{H}_{\bullet}^2 with the pointed Gromov-Hausdorff topology.

In this talk, a hyperbolic surface is assumed to be **connected**, **oriented**, **and metrically complete without boundary**, unless specified otherwise.

Theorem (W., 2021)

The space \mathcal{H}^2_{\bullet} is path-connected.

Theorem (W., 2021)

 \mathcal{H}^2_{\bullet} is weakly locally path-connected at the following points:

 \triangleright (X, p), where X is of the first kind

$$\blacktriangleright (\mathbb{H}^2, \mathsf{z}_0).$$

A *hyperbolic surface* is a 2-dimensional Riemannian manifold locally modeled by a neighborhood of the Poincaré disk, which is the unit disk

$$\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}$$

with the metric

$$|ds|^2 = \frac{4|dz|^2}{(1-|z|^2)^2}.$$

The Poincaré disk is the unique (up to isometry) complete simply connected Riemann surface with constant sectional curvature -1.

The Poincaré disk

A tiling of the Poincaré disk by 冰墩墩 generated using Marlin Christersson's tool

Beltrami's original model (1869) Source: M. Cornalba, Attualità di Eugenio Beltrami

6

Equivalently, we can also take the upper-half plane to be a model of hyperbolic geometry. This is

$$\mathbb{H}^2 = \{ z \in \mathbb{C} : \mathsf{Im}(z) > 0 \}$$

with the metric $|ds|^2 = \frac{1}{|\text{Im}(z)|^2} |dz|^2$.

A hyperbolic surface X can be viewed as the quotient manifold

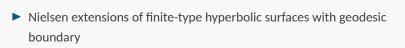
$$X \cong \mathbb{H}^2/\Gamma$$

where Γ is a discrete torsion-free subgroup of $\text{Isom}^+(\mathbb{H})^2 \cong \text{PSL}_2(\mathbb{R})$ acting on \mathbb{H}^2 . Here, all hyperbolic surfaces are assumed to be **connected**, **oriented**, **and metrically complete without boundary**, unless specified otherwise.

Examples

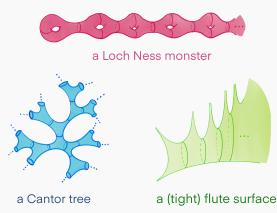
► The Poincaré disk D

Finite-type surfaces of genus g with p punctures, where 2 - 2g - p < 0



Examples of hyperbolic surfaces

Infinite-type hyperbolic surfaces

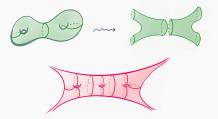


- More generally, any topological surface that is homeomorphic to S² - K, where K is a closed subset of a Cantor set, can be equipped with a complete hyperbolic metric.
 - This follows from the classification of non-compact surfaces by Kerékjártó (1923) and Richards (1962) and a decomposition of such surfaces by Bavard-Walker (2018).

Geodesic pants decomposition

Definition

A geodesic pants decomposition of a hyperbolic surface X is a collection of pairwise disjoint, mutually homotopically distinct simple closed geodesics $\{\gamma_i\}_{i \in \mathcal{I}}$ on X so that the closure of each component of $X - \bigcup \gamma_i$ is a geodesic pair of pants.



A decomposition theorem

Theorem (Álvarez-Rodriguez, 2004; Basmajian-Šarić, 2019)

Let X be a complete hyperbolic surface without boundary with a nonabelian fundamental group that is not diffemorphic to a sphere with three points removed.

Then, the convex core CC(X) admits a geodesic pants decomposition, and each component of $X - \overline{CC(X)}$ is either a funnel or a half-plane.

Definition

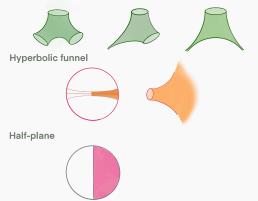
A hyperbolic surface X is of the first kind if CC(X) = X. Otherwise, it is of the second kind.

Building blocks

(13

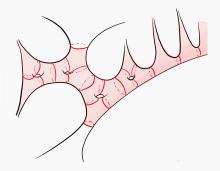
Types of building blocks of a hyperbolic surface

Geodesic pairs of pants



Fenchel-Nielsen Coordinates

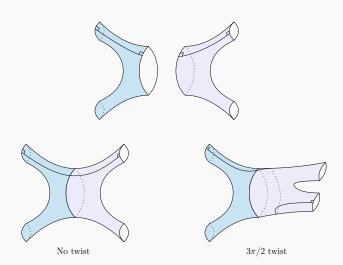
A more typical surface in \mathcal{H}^2_{\bullet} might look like this...



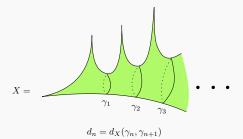
Fix a pants decomposition $\mathcal{P} = \{\gamma_i\}_{i \in \mathcal{I}}$ of X. Its hyperbolic structure is determined by the **Fenchel-Nielsen coordinates** of X with respect to \mathcal{P} :

$$\mathcal{FN}(X) = ((\text{length}[\gamma_i], \text{twist}[\gamma_i]))_{i \in \mathcal{I}}.$$

On twist parameters



A remark on half-planes



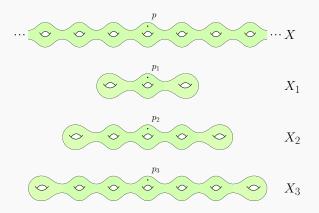
Theorem (Basmajian, 1993)

If $\sum_{n} d_{n} < \infty$ and $\sum_{n} |\text{twist}[\gamma_{n}]| < \infty$, then the metric completion of X contains a half-plane.

The Gromov distance

There are several useful notions to compare two closed surfaces that are diffeomorphic.

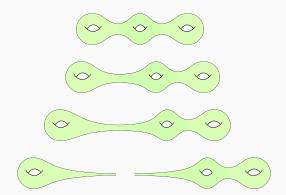
Motivation: A surface can be approximated by a sequence of larger and



larger compact subsurfaces.

Importance of basepoints

Caveat: It's important to use a basepoint keep track of the local geometry if we hope to get a unique limit.



A "strong" definition with quasi-isometry

Definition

For K > 1 and r > 0, a (K, r)-quasi-isometry between (X, p) and (Y, q) in \mathcal{H}^2_{\bullet} is a diffeomorphism between two subsurfaces $(X_1, p) \subset (X, p)$ and $(Y_1, q) \subset (Y, q)$ $f: (X_1, p) \to (Y_1, q)$

such that

- 1. $B_X(p,r) \subset (X_1,p)$ and $B_Y(q,r) \subset (Y_1,q)$;
- **2.** f(p) = q;
- **3.** For all $x, x' \in X_1$,

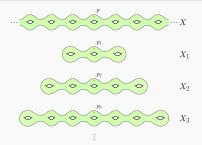
$$\frac{1}{K}d(x,x') \le d(f(x),f(x')) \le Kd(x,x').$$

Convergence criterion

Convergence criterion

In \mathcal{H}^2_{\bullet} , $(X_n, p_n) \to (X, p)$ if for all K > 1, r > 0, there exists $n \in \mathbb{N}$ sufficiently

large so that there is an (K, r)-quasi-isometry between (X_n, p_n) and (X, p).



Upshot: Two pointed surfaces are close in the pointed GH topology if large compact subsurfaces around their respective basepoints are almost isometric.

Some remarks

- The topology is Hausdorff. In fact, it's metrizable.
- Generalizes to Hⁿ_•, the space of pointed *n*-dimensional hyperbolic manifolds
- Has rich applications in dimension 3. It's a crucial ingredient in the works of Jørgensen-Thurston in determining the volume spectrum.
- In the setting of hyperbolic manifolds, this version of the definition is equivalent to the notion of (e, R)-relations introduced by Edwards (1975) and generalized by Gromov (1981).
- ► This is related to the Chabauty topology on the space of closed subgroups of Isom⁺(ℍⁿ).

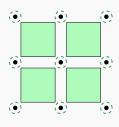
Chabauty topology

Definition

Definition

Given a Lie group G, let Sub(G) be the set of closed subgroups of G. The **Chabauty topology** on Sub(G) is generated by all open sets of the form

- 1. $O_1(K) = \{H \le G : H \cap K = \emptyset\}, K \subset G \text{ is compact};$
- 2. $O_2(U) = \{H \leq G : H \cap U \neq \emptyset\}, U \subset G \text{ is open.}$



Chabauty convergence

In $\mathrm{Sub}(G)$, $H_n \to H$ if

- **1.** $\forall h \in H, \exists h_n \in H_n \text{ such that } h_n \rightarrow h \text{ and }$
- 2. *H* contains the limits of all convergent

sequences $h_n \in H_n$.

► Sub(G) is compact and Hausdorff.

Relationship with the Chabauty topology

- ▶ Let $Sub_{DT}(PSL_2 \mathbb{R}) \subset Sub(PSL_2 \mathbb{R})$ be the subspace of discrete torsion-free subgroups of $PSL_2 \mathbb{R}$ with the Chabauty topology.
- Let \mathcal{H}_{f}^{2} be the space of hyperbolic surfaces with baseframe

$$\mathcal{H}^2_f = \{(X, p, \mathbf{w}) : (X, p) \in \mathcal{H}^2_{ullet}, \mathbf{w} \text{ an orthonormal basis of } T_p(X)\}/\sim$$

where \sim is by baseframe-preserving isometry.

• We equip \mathcal{H}_{f}^{2} with the framed version of the pointed GH topology.

Relationship with the Chabauty topology

Fix z₀ ∈ H² and an oriented orthonormal basis v₀ of T_{z₀}(H²).
Let π : H² → H²/Γ be the projection. Then, the map

$$\begin{split} \operatorname{Sub}_{\mathrm{DT}}(\operatorname{PSL}_2\mathbb{R}) &\longrightarrow \mathcal{H}_{\mathrm{f}}^2\\ & \Gamma \longmapsto (\mathbb{H}^2/\Gamma, \pi(\mathbf{z}_0), \mathrm{d}\pi_{\mathbf{z}_0}(\mathbf{v}_0)) \end{split}$$

gives a homeomorphism! See Canary-Marden-Epstein (2006).

Relationship with the Chabauty topology Prior Results

- ► The Chabauty closure of the subspace of one-generator subgroups of $PSL_2 \mathbb{R}$ is simply connected. (Baik-Clavier, 2013)
- ► The subspace of closed elementary subgroups of Sub PSL₂(ℝ) is simply connected. (Biringer-Lazarovich-Leitner, 2021)

27

If S is a finite-type hyperbolic 2-orbifold, we write

```
\operatorname{Sub}(\operatorname{PSL}_2\mathbb{R}; \mathsf{S}) := \{\Gamma \in \operatorname{Sub}(\operatorname{PSL}_2\mathbb{R}) : \mathbb{H}^2 / \Gamma \cong \mathsf{S}\}.
```

Let $\mathcal{M}(S)$ be the moduli space of S.

Theorem (Biringer-Lazarovich-Leitner, 2021)

For such an S, the map

 $\pi_{Sub}: Sub(PSL_2 \mathbb{R}; S) \to \mathcal{M}(S)$

is a fiber orbibundle with fiber T¹S and Sub(PSL₂ \mathbb{R} ; S) is a 6g + 2(k + l) - 3 dimensional manifold, where g is the genus of S, and k is the number of cusps, and l is the number of cone points.

Relationship with the Chabauty topology

Prior Results

Theorem (Biringer-Lazarovich-Leitner, 2021)

Suppose that either a four-punctured sphere or a once-punctured torus embeds in S as the interior of a surface with geodesic boundary. Then $Sub(PSL_2(\mathbb{R}); S)$ is simply connected.

Theorem (W., 2021)

The space \mathcal{H}^2_{\bullet} is path-connected.

Theorem (W., 2021)

 \mathcal{H}^2_{\bullet} is weakly locally path-connected at the following points:

 \triangleright (X, p), where X is of the first kind

$$\blacktriangleright (\mathbb{H}^2, \mathsf{z}_0).$$

Continuous paths in $\mathcal{H}^{2^{1}}_{\bullet}$

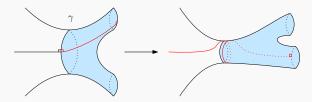
Examples

We can create a continuous path in \mathcal{H}^2_{\bullet} by

Moving a basepoint along a path on a fixed surface



 Adjusting finitely many length and twist parameters in the Fenchel-Nielsen coordinates

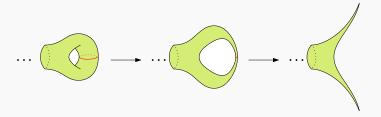


Continuous paths in \mathcal{H}^2_{\bullet} Examples (cont.)

31

We can create a continuous path in \mathcal{H}^2_{\bullet} by

Pinching a simple closed geodesic to a cusp

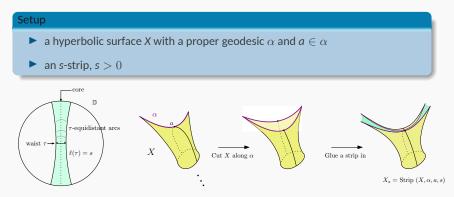


Continuous paths in \mathcal{H}^2_{\bullet}

Examples (cont.)

We can create a continuous path in \mathcal{H}^2_{\bullet} by

Inserting and growing a strip along a properly embedded infinite geodesic



Continuous paths in \mathcal{H}^2_{ullet}

Strip insertion is continuous

Proposition (W., 2021)

Fixing $(X, p) \in \mathcal{H}^2_{\bullet}$ and α and a as above, the map

$$\mathbb{R}_+ o \mathcal{H}^2_{ullet}$$

 $s \mapsto (X_s, p$

is continuous. That is, inserting and growing a strip is a continuous construction in $\mathcal{H}^2_{\bullet}.$

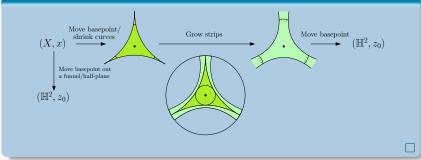
Global path-connectivity of \mathcal{H}^2_{ullet}

Proof sketch

Theorem

The space \mathcal{H}^2_{\bullet} is path-connected.

Proof.

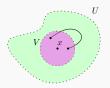


Local path-connectivity of \mathcal{H}^2_{ullet}

Actually weakly

Definition

A space \mathcal{X} is **weakly locally path-connected at** $x \in \mathcal{X}$ if every open neighborhood U of x contains an open neighborhood V of x such that any two points in V lie in some path-connected subset of U.



Upshot

If ${\mathcal X}$ is weakly locally path-connected at each point, then ${\mathcal X}$ is locally path-connected.

Local path-connectivity of \mathcal{H}^2_ullet

Now and next

Theorem

 \mathcal{H}^2_{ullet} is weakly locally path-connected at the following points:

- \triangleright (X, p), where X is of the first kind
- ► $(\mathbb{H}^2, \mathbf{z}_0)$.

Goal

The space \mathcal{H}^2_{\bullet} is locally path-connected? Contractible?

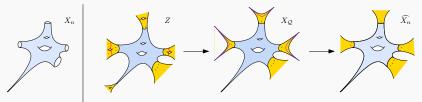
Local path-connectivity of \mathcal{H}^2_{ullet}

At (X, p), where X is of the first kind

Exhaust X by finite-area subsurfaces with geodesic boundary

$$X_1 \subset X_2 \cdots \subset X$$

Define a neighborhood basis based on the X_n

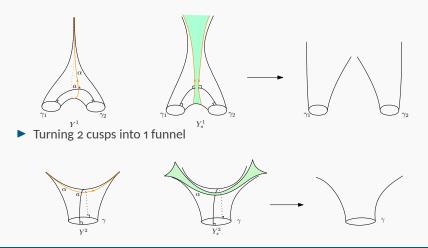


Continuous paths in \mathcal{H}^2_ullet

Two particular strip insertions

We make use of two special strip insertions.

Turning 1 cusp into 2 funnels



S. Warakkagun | Connectivity of the Space of Pointed Hyperbolic Surfaces

Local path-connectivity of \mathcal{H}^2_{ullet} At (\mathbb{H}^2, z_0)

Neighborhoods

For r > 0, let $U(r) = \{(X, p) : injrad_X(p) > r\}$.

S. Warakkagun | Connectivity of the Space of Pointed Hyperbolic Surfaces

Local path-connectivity of \mathcal{H}^2_{\bullet} At (\mathbb{H}^2, z_0)

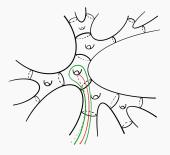
When X is non-compact,

Theorem (Bavard-Walker, 2018)

There is a collection \mathcal{A} of disjoint properly embedded geodesics in X whose complement is a union of simply connected regions.

Figure: Fixing an end of *X*, we choose such geodesic arcs exiting that end for every genus. The picture is modified from their paper.

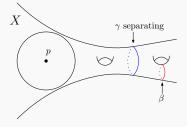
Local path-connectivity of \mathcal{H}^2_{ullet} At (\mathbb{H}^2, z_0)



When X is non-compact,

- add strips, one at a time, along the geodesics in \mathcal{A} ,
- take the limit as the strip widths go to ∞ , and
- we get a path from (X, p) to (\mathbb{H}^2, z_0) .

Local path-connectivity of \mathcal{H}^2_{ullet} At (\mathbb{H}^2, z_0)



- When X is compact,
 - find a separating simple closed geodesic γ far from the basepoint p,
 - pinch β on the other side of γ from p, and
 - we return to the non-compact case!

谢谢