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The space H?

Definition

H2 := the set of (isometry classes) of hyperbolic surfaces with a
basepoint
= {(X,p) : Xa hyperbolic surface, p € X}/ ~

where (X, p) ~ (X', p’) if there is a basepoint-preserving isometry between
them. We equip 2 with the pointed Gromov-Hausdorff topology.

In this talk, a hyperbolic surface is assumed to be connected, oriented, and
metrically complete without boundary, unless specified otherwise.
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The space HE is path-connected.

H2 is weakly locally path-connected at the following points:
» (X, p), where X is of the first kind
> (H2, Z()).
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Hyperbolic surfaces

A hyperbolic surface is a 2-dimensional Riemannian manifold locally
modeled by a neighborhood of the Poincaré disk, which is the unit disk

D={zeC: |z <1}
with the metric

4|dz|?

ds|> = ————.
1" = T ey

The Poincaré disk is the unique (up to isometry) complete simply connected
Riemann surface with constant sectional curvature —1.
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The Poincaré disk

Beltrami’s original model (1869)
A tiling of the Poincaré disk by Source: M. Cornalba, Attualita di
7KIE3] generated using Marlin

Christersson’s tool

Eugenio Beltrami
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Hyperbolic surfaces

Equivalently, we can also take the upper-half plane to be a model of
hyperbolic geometry. This is

H? = {z€ C:Im(z) > 0}

with the metric |ds|* = [t |dz|*.

A hyperbolic surface X can be viewed as the quotient manifold
X = H?/T

where I is a discrete torsion-free subgroup of Isom™ (H)? = PSLy(R)
acting on HZ.
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Examples of hyperbolic surfaces

Here, all hyperbolic surfaces are assumed to be connected, oriented, and
metrically complete without boundary, unless specified otherwise.

Examples

» The Poincaré disk D

» Finite-type surfaces of genus g with p punctures, where 2 —2g —p < 0
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Examples of hyperbolic surfaces

» Nielsen extensions of finite-type hyperbolic surfaces with geodesic
boundary
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Examples of hyperbolic surfaces

» Infinite-type hyperbolic surfaces

a Loch Ness monster

1A
Wy
\ /s‘ v
Y
a Cantor tree a (tight) flute surface
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Examples of hyperbolic surfaces

» More generally, any topological surface that is homeomorphic to
S? — K, where K is a closed subset of a Cantor set, can be equipped
with a complete hyperbolic metric.
» This follows from the classification of non-compact surfaces by Kerékjarté
(1923) and Richards (1962) and a decomposition of such surfaces by
Bavard-Walker (2018).
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Understanding the geometry of a surface

Geodesic pants decomposition

A geodesic pants decomposition of a hyperbolic surface X is a collection of
pairwise disjoint, mutually homotopically distinct simple closed geodesics
{7i}iez on X so that the closure of each component of X — [ ] 7; is a geodesic
pair of pants.
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Understanding the geometry of a surface

A decomposition theorem

Let X be a complete hyperbolic surface without boundary with a nonabelian
fundamental group that is not diffemorphic to a sphere with three points
removed.

Then, the convex core CC(X) admits a geodesic pants decomposition, and

each component of X — CC(X) is either a funnel or a half-plane.

A hyperbolic surface X is of the first kind if CC(X) = X. Otherwise, it is of
the second kind.
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Understanding the geometry of a surface

Building blocks

Types of building blocks of a hyperbolic surface

Geodesic pairs of pants

A A

g

2

Hyperbolic funnel

Half-plane

w (I
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Understanding the geometry of a surface

Fenchel-Nielsen Coordinates

A more typical surface in ’HE might look like this...

Fix a pants decomposition P = {Vi}iez of X. Its hyperbolic structure is
determined by the Fenchel-Nielsen coordinates of X with respect to P:

FN(X) = ((length[i], twist[¥i]));c 7 -
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Understanding the geometry of a surface

On twist parameters

No twist 37 /2 twist
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Understanding the geometry of a surface

A remark on half-planes

A tight flute surface

X - )‘ ° ° °
n 2 oy

dp = dx (Y, Tn+1)

If Y~ dy, < coand ) |twist[yy]| < oo, then the metric completion of X

n n
contains a half-plane.
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The pointed Gromov-Hausdorff topology

The Gromov distance

There are several useful notions to compare two closed surfaces that are
diffeomorphic.
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The pointed Gromov-Hausdorff topology

Motivation

Motivation: A surface can be approximated by a sequence of larger and

larger compact subsurfaces.
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The pointed Gromov-Hausdorff topology

Importance of basepoints

Caveat: It's important to use a basepoint keep track of the local geometry
if we hope to get a unique limit.

> >
7

(> F////o\/<>\
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The pointed Gromov-Hausdorff topology

A “strong” definition with quasi-isometry

For K > 1andr > 0, a (K, r)-quasi-isometry between (X, p) and (Y,q) in H2
is a diffeomorphism between two subsurfaces (X1, p) C (X, p) and

(Y1,9) C (Y,q)
f:(X1,p) = (Y1,9)

such that
1. Bx(p,r) C (X1,p) and By(q,r) C (Y1,9);
2. f(p) = a;
3. Forall x,x" € Xq,

%d(x,x’) < d(f(x), (X)) < Kd(x,X).
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The pointed Gromov-Hausdorff topology

Convergence criterion

InH2, (X, pn) — (X, p) if forallK > 1, r > 0, there exists n € N sufficiently
large so that there is an (K, r)-quasi-isometry between (X,, p,) and (X, p).

o To oo o X

P
(e =e=9) X
—\
= Xy
°

D09 x

Upshot: Two pointed surfaces are close in the pointed GH topology if large

compact subsurfaces around their respective basepoints are almost
isometric.
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The pointed Gromov-Hausdorff topology

Some remarks

» The topology is Hausdorff. In fact, it's metrizable.

» Generalizes to H], the space of pointed n-dimensional hyperbolic
manifolds
» Has rich applications in dimension 3. It's a crucial ingredient in the

works of Jgrgensen-Thurston in determining the volume spectrum.

» In the setting of hyperbolic manifolds, this version of the definition is
equivalent to the notion of (e, R)-relations introduced by Edwards
(1975) and generalized by Gromov (1981).

» This is related to the Chabauty topology on the space of closed
subgroups of Isom™ (H").
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Chabauty topology

Definition

Given a Lie group G, let Sub(G) be the set of closed subgroups of G. The
Chabauty topology on Sub(G) is generated by all open sets of the form

1. 01(K) = {H < G:HNK=0},KC Gis compact;
2. 02(U)={H<G:HNU=# 0}, U C Gis open.

‘e O} ')
In Sub(G), H, — H if
1. Vh € H, 3h, € H, such that h, — h and
2. H contains the limits of all convergent
‘e ‘o) ‘e sequences h, € Hp.

» Sub(G) is compact and Hausdorff.



Relationship with the Chabauty topology

Framed surfaces

> Let Subpr(PSLy R) C Sub(PSLy R) be the subspace of discrete
torsion-free subgroups of PSLy; R with the Chabauty topology.

> Let 7—[? be the space of hyperbolic surfaces with baseframe
H? = {(X,p,w) : (X,p) € H2,w an orthonormal basis of T,(X)}/ ~

where ~ is by baseframe-preserving isometry.

» We equip ’H? with the framed version of the pointed GH topology.
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Relationship with the Chabauty topology

Framed surfaces

» Fix zo € H? and an oriented orthonormal basis vq of T,, (H?).

» Let 7 : H? — H?/T be the projection. Then, the map

SubDT(PSL2 R) — 7‘[,:2
I'— (H2/T, 7(2p), dmz, (Vo))

gives a homeomorphism! See Canary-Marden-Epstein (2006).
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Relationship with the Chabauty topology

Prior Results

» The Chabauty closure of the subspace of one-generator subgroups of
PSL; R is simply connected. (Baik-Clavier, 2013)

» The subspace of closed elementary subgroups of Sub PSLy(R) is
simply connected. (Biringer-Lazarovich-Leitner, 2021)
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Relationship with the Chabauty topology

Prior Results

If Sis a finite-type hyperbolic 2-orbifold, we write
Sub(PSLy R; S) := {I' € Sub(PSL, R) : H?/T = S}.

Let M(S) be the moduli space of S.

For such an S, the map

Tsub : Sub(PSLy R; S) — M(S)

is a fiber orbibundle with fiber T'S and Sub(PSLy R; S) isa 63 + 2(k + 1) — 3
dimensional manifold, where g is the genus of S, and k is the number of
cusps, and | is the number of cone points.
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Relationship with the Chabauty topology

Prior Results

Suppose that either a four-punctured sphere or a once-punctured torus
embeds in S as the interior of a surface with geodesic boundary. Then
Sub(PSLy(R); S) is simply connected.
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Results

The space HE is path-connected.

H2 is weakly locally path-connected at the following points:
» (X, p), where X is of the first kind
> (H2, Z()).
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Continuous paths in 72

EES

We can create a continuous path in %2 by

» Moving a basepoint along a path on a fixed surface

y 5 — ~ .

» Adjusting finitely many length and twist parameters in the
Fenchel-Nielsen coordinates
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Continuous paths in 72

Examples (cont.)

We can create a continuous path in Hf by

» Pinching a simple closed geodesic to a cusp

N . <
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Continuous paths in 72

Examples (cont.)

We can create a continuous path in Hf by

» Inserting and growing a strip along a properly embedded infinite
geodesic

» a hyperbolic surface X with a proper geodesic « and a € «

» an s-strip,s > 0

a V
R —_—
X Cut X along

Glue a strip in

X, = Strip (X, a,a,5)
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Continuous paths in #?

Strip insertion is continuous

Fixing (X, p) € H2 and v and a as above, the map
R, — H2
s (Xs,p)

is continuous. That is, inserting and growing a strip is a continuous
construction in 2.
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Global path-connectivity o

Proof sketch

The space ’Hf is path-connected.

M .
s%‘;?n]f(azil;g;t/ Grow strips Move basepoint 3
X,z) —— —_— — (I 2)

Move basepoint out
a funnel /half-plane

(H27 Zo)
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Local path-connectivity of #?2

Actually weakly

A space X is weakly locally path-connected at x € X if every open
neighborhood U of x contains an open neighborhood V of x such that any
two points in V lie in some path-connected subset of U.

U

K 2

If X is weakly locally path-connected at each point, then X is locally

path-connected.
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Local path-connectivity of 2

Now and next

H2 is weakly locally path-connected at the following points:
» (X, p), where X is of the first kind
> (H2, Z()).

The space H2 is locally path-connected? Contractible?
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Local path-connectivity of 2

At (X, p), where X is of the first kind

» Exhaust X by finite-area subsurfaces with geodesic boundary

X1 CXo---CX

» Define a neighborhood basis based on the X,
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Continuous paths in 72

Two particular strip insertions

We make use of two special strip insertions.

» Turning 1 cusp into 2 funnels

M T2 T T2

» Turning 2 cusps into 1 funnel
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Local path-connectivity of 2

At (HZ2, z0)

Forr > 0, let U(r) = {(X,p) : injrady(p) > r}.
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Local path-connectivity of 2

At (HZ2, z0)

» When X is non-compact,

There is a collection A of disjoint properly embedded geodesics in X
whose complement is a union of simply connected regions.

Figure: Fixing an end of X, we choose such geodesic arcs exiting that end for
every genus. The picture is modified from their paper.
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Local path-connectivity of 2
At (HZ2, z0)

» When X is non-compact,
P add strips, one at a time, along the geodesics in A,
» take the limit as the strip widths go to oo, and
> we get a path from (X, p) to (H?, z9).
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Local path-connectivity of 2

At (HZ2, z0)

7 separating

» When X is compact,

» find a separating simple closed geodesic ~y far from the basepoint p,
» pinch 3 on the other side of v from p, and
» we return to the non-compact case!
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