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I. Motivation and Backgrounds
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Existence and uniqueness of symplectic structures

X: closed, smooth 4-manifold.
A symplectic form on X is a 2-form ω P Ω2pXq s.t.

dω “ 0, and ω ^ ω nowhere vanishing.

Given a P H2pX;Rq, consider the spaces
SapXq :“ tsymplectic ω with rωs “ au

SωpXq :“ path-connected component of SrωspXq that contains ω.

Question
(1) Is SapXq nonempty? (Existence of symplectic structures.)
(2) Is SapXq path-connected? (Uniqueness of symplectic structures up to
isotopies.)
(3) Is SωpXq simply-connected? (Uniqueness of isotopies.)

Powerful techniques: pseudo holomorphic curves, Seiberg-Witten theory.
(1), (3) partly answered. (2) wide open.
One goal today: Use Seiberg-Witten theory to study (3).
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Smooth v.s. Symplectic

Given pX, ωq, we consider the following groups

DiffpXq :“ tdiffeomorphisms on Xu

DiffpX, rωsq :“ tf P DiffpX, rωsq | f˚rωs “ rωsu

SymppX, ωq :“ tsymplectormorphisms on pX, ωqu

Question
(1) Is the inclusion i : SymppX, ωq Ñ DiffpX, rωsq a homotopy equivalence?
(2) Is the map ir,˚ : πrpSymppX, ωqq Ñ πrpDiffpX, rωsqq injective or surjective?

Note that πrpDiffpX, rωsqq “ πnpDiffpXqq for r ě 1.
By Moser’s argument, we have a long exact sequence

¨ ¨ ¨ Ñ π2pSωpXqq Ñπ1pSymppX, ωqq
i1,˚

ÝÝÑ π1pDiffpXqq

Ñ π1pSωpXqq Ñ π0pSymppX, ωqq
i0,˚

ÝÝÑ π0pDiffpX, rωsqq

So Question (2) is a refined version of the uniqueness problem of isotopies.
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Topology of SymppX, ωq and DiffpXq

Finding the homotopy type of SymppX, ωq is very difficult.
Only in very few examples, homotopy type of SymppX, ωq is completely
understood. E.g., CP2, S2 ˆ S2,CP2#nCP2 with n ď 5 (Gromov,
Abreu-McDuff, Anjos, Lalonde-Pinsonnault, Evans).
Even less is known about the topology of DiffpXq.
We don’t know a single closed 4-manifold X for which the homotopy type of
DiffpXq is fully understood.

Conjecture (Smale conjecture in dimension 4)
DiffpS4q » Op5q. Equivalently, Diff`

B pD4q » ˚

Theorem (Watanabe (2018))
πrpDiff`

B pD4q b Q ‰ 0 for i “ 1, 4, 8.

So it is not feasible to study ir,˚ : πrpSymppX, ωqq Ñ πrpDiffpXqq by finding
the homotopy type of SymppX, ωq and DiffpXq.
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II. Non-symplectic loop of diffeomorphisms
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The Dehn-Seidel twist

Want to study ir,˚ : πrpSymppX, ωqq Ñ πrpDiffpX, rωsqq.
Expectation: DiffpX, rωsq is essentially “larger” than SymppX, ωq.
Open question: Is i0,˚ always surjective/always not surjective?
Is i0,˚ always injective? No!

Theorem (Seidel (1997))
Let pX, ωq be a minimal and irrational symplectic 4-manifold with b1pXq “ 0 and
dimpH2pX;Z{2qq ě 3. Suppose X contains an embedded Lagrangian 2-sphere S.
Then square of the Dehn twist along S gives a nonzero element in the kernel i0,˚.

Seidel’s proof uses deep results in quantum cohomology ring QHpXq and the
Floer homomlogy HFpϕq for ϕ P SymppX, ωq. It applies to large family of
symplectic manifolds. (e.g. complete intersections in CPn`2 other than CP2

or CP1
ˆ CP1)
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dimpH2pX;Z{2qq ě 3. Suppose X contains an embedded Lagrangian 2-sphere S.
Then square of the Dehn twist along S gives a nonzero element in the kernel i0,˚.

Seidel’s proof uses deep results in quantum cohomology ring QHpXq and the
Floer homomlogy HFpϕq for ϕ P SymppX, ωq. It applies to large family of
symplectic manifolds. (e.g. complete intersections in CPn`2 other than CP2

or CP1
ˆ CP1)
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Non-symplecitic loop of diffeomorphisms

Theorem (Smirnov (2020))
For many complex surfaces pX, ωq (including hypersurfaces in CP3 with degree
‰ 1 or 4), the map i1,˚ : π1pSymppX, ωqq Ñ π1pDiffpXqq is not surjective.

The proof uses the family Seiberg-Witten theory (Donaldson, Ruberman,
Li-Liu, Nakamura, Baraglia-Konno....) and builds on previous work of
Kronheimer.

Theorem (L. (2021))
Let pX, ωq be any symplectic 4-manifold that contains a smoothly embedded S2

with self-intersection ´1 or ´2. Then i1,˚ is not surjective.

I.e., whenever there is a smoothly embedded 2-sphere (not necessarily
Lagrangian or symplectic) of self-intersection -1 or -2, there is a loop of
diffeomorphism which can not be deformed to loop of symplectomorphisms.
The case of self-intersection ´1 confirms a conjectured by McDuff.
New ingredient: a new gluing formula for the family Seiberg-Witten invariant.
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Fragile loops vs. robust loops of symplectic forms

¨ ¨ ¨ Ñ π1pSymppX, ωqq
i1,˚

ÝÝÑ π1pDiffpXqq
p˚

ÝÝÑ π1pSrωspXqq

B
ÝÑ π0pSymppX, ωqq

i0,˚
ÝÝÑ π0pDiffpX, rωsqq

Assume pX, ωq contains an Lagragian 2-sphere S and satisfies the
homological conditions of Seidel’s theorem. Then D 0 ‰ τ 2

S P ker i0,˚.
Kronheimer found rαs, rβs P π1pSrωspXqq s.t. Bprαsq “ Bprβsq “ τ 2

S .
For any r ą 0, Kronheimer found examples with π2r´1pSrωspXqq ‰ 0.
i1,˚ not surjective (our theorem) ùñ D a loop rγs P ker B Ă π1pSrωspXqq.
When S is Lagrangian, rγs “ rαs ´ rβs.
Essential difference: When we perturb rωs, α, β are fragile but γ is robust.
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The space of symplectic forms is not simply-connected

Corollary
Let pX, ωq be a symplectic 4-manifold that contain a smoothly embedded S2 with
self-intersection ´2 or ´1. Then π1pSrωspXqq ‰ 0.

In the case of ´1-sphere, we can prove a stronger result:

Theorem (L. (2021))
Let pX, ωq be a non-minimal symplectic 4-manifold with b`

2 pXq ‰ 3. Then
π1pSpXqq ‰ 0. (SpXq denotes the space of all symplectic forms.)

X is non-minimal means that X – X1#CP2.
These loops are are contractible in the space of non-degenerate 2-forms.
The condition b`

2 pXq ‰ 3 is related to the wall-crossing phenomena for family
Seiberg-Witten invariants.
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III. Non-symplectic families of smooth 4-manifolds
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Loops in DiffpXq ÐÑ Families of X over S2

Given γ : S1 Ñ DiffpXq, we have a diffeomorphism

rγ : S1 ˆ X Ñ S1 ˆ X defined by γ̃pt, xq “ pt, γptqxq.

We form the bundle X ãÑ Eγ
p

ÝÑ B by setting

B “ S2, Eγ “ pD2 ˆ Xq Y
rγ pD2 ˆ Xq.

We treat Eγ as a family tXbubPB of 4-manifolds, where Xb “ p´1pbq.
γ is homotopic to γ1 ðñ Eγ is isomorphic to Eγ1 as bundles.

rγs P Imagepπ1pSymppX, ωqq
i1,˚

ÝÝÑ π1pDiffpXqqq ðñ

There is a fiberwise symplectic structure tωbubPS2 Ă SωpXq on tXbubPS2 .
To show i1,˚ is not surjective, it suffices to establish non-symplectic families
over S2.
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The ADE singularities

An ADE singularity (Du Val singularity) is an isolated surface singularity
locally modelled on Σ “ C2{Γ. Here Γ is a finite subgroup of SUp2q “ Spp1q,
acting as the left multiplication on H “ C2.
Such singularity has a unique minimal resolution r : rΣ Ñ Σ.
r´1p0q is a union of p´2q-spheres. They intersect each other following the
shape of the Dynkin diagram of ADE type.

Kronheimer proved that rΣ is an ALE space (i.e. it admits a hyper-Kähler
metric that approaches the Euclidian metric at infinity.)
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The ADE families

Let B “ tai ` bj ` ck P H | a2 ` b2 ` c2 “ 1u “ S2. Each point b P B gives a
complex structure Jb on H, with Jbphq “ h ¨ b.
Take the product family B ˆ Σ. Resolve the fiber tbu ˆ Σ using Jb. This
gives a nontrivial family rΣ ãÑ E1 Ñ B.
Let X be a 4-manifold that contain an ADE configuration of smoothly
embedded ´2-spheres. (E.g. X is a minimal resolution an algebraic surface
with an ADE singularity). Then an open neighborhood of these spheres is
diffeomorphic to rΣ. And X “ rΣ Y pXzrΣq.
We can form the family E “ E1 Y pB ˆ pXzrΣqq, called an ADE family.

Theorem (L.)
Let tωbu be a family of minimal symplectic structure on an ADE family
X ãÑ E Ñ S2. Then at least one of the following two situation happens:

For any a P H2prΣ;Zq with a ¨ a “ ´2, the function S2 Ñ R defined by
b ÞÑ xrωbs, ay takes both positive and negative values. Or,
b`pXq “ 3, c1pKq is torsion, and tωbu is a winding family.

(Here K is the canonical bundle.) In particular, the ADE family never admits
minimal fiberwise symplectic structures in a constant cohomology class.
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Family blow up at a single point

A similar idea works for blow up. Take x P X. Then
torientation compatible almost complex structure at TxXu » S2.

A specific family of almost complex structure tJbubPS2 can be obtained by
fixing an isomorphism TxX – H.
We blow up the product family S2 ˆ X fiberwisely at x, using tJbu. This gives
the blow up family pX#ĎCP2

q ãÑ E Ñ S2

Theorem (L.)
The blown-up family pX#ĎCP2

q ãÑ E Ñ S2 doesn’t admit a fiberwise symplectic
structure tωbubPS2 such that:

1 xc1pKq,Dy “ ˘1. D “ CP1 is the exceptional divisor. (Automatically satisfied
unless the fiber is rational or ruled with b`

2 “ 1.)
2 rωbs P H2pX;Rq is independent with b.

Furthermore, if b`
2 pXq ‰ 3, then condition (2) can be dropped.

McDuff conjectured that a similar result holds in all dimensions.
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IV. A gluing formula for family Seiberg-Witten invariants.
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The family Seiberg-Witten invariants

Consider a smooth fiber bundle X ãÑ E p
ÝÑ B.

Pick a family Spinc-structure sE. Choose metrics tgbubPB and perturbations
tµbubPB on each fiber Xb. Here µb P Ω2pXbq.
We study the Seiberg-Witten equations on the fiber Xb

F`
At

b
“ ρ´1pϕbϕ

˚
b q0 ` iµb, {D`

Abϕb “ 0.

Consider the parametrized moduli space
M :“ tpb,Ab, ϕbq | pAb, ϕbq solves the S.W. eqs on Xbu{gauge transformations.

For generic choice of ptgbu, tµbuq, M is a compact, smooth manifold of
dimension dpsEq.
We focus on the particular case dpsEq “ 0. Then we define the family
Seiberg-Witten invariant

FSWξpE, sEq :“ #M P Z.

Here ξ P rB, Sb`pXq´1s is the “chamber” for our choice of ptgbu, tµbuq.
When B “ point, we denote FSWξpE, sEq by SWpX, sXq.
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Taubes’ vanishing theorem

Assume pX, ωq is a symplectic 4-manifold.
We have a canonical Spinc-structure sJ with c1psJq “ ´c1pKq.

Theorem (Taubes)
Assuming b`

2 pXq ą 1, then we have
1 SWpX, sJq “ 1.
2 SWpX, sq “ 0 if rωs ¨ c1psq ă ´rωs ¨ c1pKq

Proved by setting the perturbation µ “ ´rω ´ iF`
At

0
for r " 0.

Consider a family X ãÑ E Ñ B.
Suppose tXbu carries a fiberwise symplectic structure tωbu.
Set the perturbation µb “ ´rωb ´ iF`

At
0,b

. When r " 0, the chamber ξω is
called the “symplectic chamber.”

Theorem (Taubes)
FSWξω pE, sEq “ 0 if for any b P B we have rωbs ¨ c1psE|Xb q ă ´rωbs ¨ c1pKq
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A gluing formula for FSW (I)

Our setting is as follows:
X ãÑ E Ñ B has a decomposition E1 YBˆY E2.
Here X1 ãÑ E1 Ñ B is general family of manifold X1 with boundary Y.
E2 is the product family B ˆ X2 of manifold X2 with boundary ´Y. We
assume b`

2 pX2q ą 1.
We assume π1pBq acts trivially on the homology of the fibers.

By removing small balls, we obtain a family cobordism

ĂW1 :“ E1zpB ˆ D4q : S3 Ñ Y

and single cobordism
W2 :“ X2zD4 : Y Ñ S3.

Given (family) Spinc-structures sE1 on E1 and sX2 on X2. We get
cobordism-induced maps

yHM˚p ĂW1, sE1 q : yHM˚pS3q Ñ yHM˚pYq

ÝÝÑHM˚
pW2, sX2 q : }HM

˚
pS3q Ñ yHM

˚
pYq
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A gluing formula for FSW (II)

Theorem (Kronheimer-Mrowka, L.)
One has

ř

s FSWpE, sq “ xyHM˚p rW1, sE1 qpp1q ,
ÝÝÑHM˚

pW2, sX2 qpq1qy. Here p1 and q1
are canonical generators of the monopole Floer (co)homology of S3. The sum is
taken over all family Spinc-structures s on E that satisfies s|E1 “ sE1 ,
s|E2 “ p˚psX2 q, dpsEq “ 0.

Corollary
Assume Y is an L-space and b`

2 pX2q ą 1. Given a family Spinc-stricture sE on E
and a Spinc-structure sX on X that satisfy the conditions
sE|E2 “ p˚psX|X2 q and dpsEq “ dpsXq “ 0. Then we have

FSWpE, sEq “ xc dimpBq
2

p´ Indp {DpE, sEqqq, rBsy ¨ SWpX, sXq

if b`
2 pX1q “ 0. We have FSWpE, sEq “ 0 if b`

2 pX1q ‰ 0.

We use this formula to compute FSW of ADE families and blow up families
and use Taubes’ result to show that they have no symplectic structures.
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s|E2 “ p˚psX2 q, dpsEq “ 0.

Corollary
Assume Y is an L-space and b`

2 pX2q ą 1. Given a family Spinc-stricture sE on E
and a Spinc-structure sX on X that satisfy the conditions
sE|E2 “ p˚psX|X2 q and dpsEq “ dpsXq “ 0. Then we have

FSWpE, sEq “ xc dimpBq
2

p´ Indp {DpE, sEqqq, rBsy ¨ SWpX, sXq

if b`
2 pX1q “ 0. We have FSWpE, sEq “ 0 if b`

2 pX1q ‰ 0.

We use this formula to compute FSW of ADE families and blow up families
and use Taubes’ result to show that they have no symplectic structures.
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Thank you for listening.
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