Nonexistence of symplectic structures on certain family of 4-manifolds

Jianfeng Lin

YMSC Topology Seminar

I. Motivation and Backgrounds

• X: closed, smooth 4-manifold.

- X: closed, smooth 4-manifold.
- A symplectic form on X is a 2-form $\omega \in \Omega^2(X)$ s.t.

 $d\omega = 0$, and $\omega \wedge \omega$ nowhere vanishing.

- X: closed, smooth 4-manifold.
- A symplectic form on X is a 2-form $\omega \in \Omega^2(X)$ s.t.

 $d\omega = 0$, and $\omega \wedge \omega$ nowhere vanishing.

• Given $a \in H^2(X; \mathbb{R})$, consider the spaces

 $S_a(X) := \{ \text{symplectic } \omega \text{ with } [\omega] = a \}$

 $\mathcal{S}_{\omega}(X) := \text{path-connected component of } \mathcal{S}_{[\omega]}(X) \text{ that contains } \omega.$

- X: closed, smooth 4-manifold.
- A symplectic form on X is a 2-form $\omega \in \Omega^2(X)$ s.t.

 $d\omega = 0$, and $\omega \wedge \omega$ nowhere vanishing.

• Given $a \in H^2(X; \mathbb{R})$, consider the spaces

 $S_a(X) := \{ \text{symplectic } \omega \text{ with } [\omega] = a \}$

 $S_{\omega}(X) :=$ path-connected component of $S_{[\omega]}(X)$ that contains ω .

Question

(1) Is $S_a(X)$ nonempty? (Existence of symplectic structures.)

- X: closed, smooth 4-manifold.
- A symplectic form on X is a 2-form $\omega \in \Omega^2(X)$ s.t.

 $d\omega = 0$, and $\omega \wedge \omega$ nowhere vanishing.

• Given $a \in H^2(X; \mathbb{R})$, consider the spaces

 $S_a(X) := \{ \text{symplectic } \omega \text{ with } [\omega] = a \}$

 $S_{\omega}(X) :=$ path-connected component of $S_{[\omega]}(X)$ that contains ω .

Question

(1) Is $S_a(X)$ nonempty? (Existence of symplectic structures.) (2) Is $S_a(X)$ path-connected? (Uniqueness of symplectic structures up to isotopies.)

- X: closed, smooth 4-manifold.
- A symplectic form on X is a 2-form $\omega \in \Omega^2(X)$ s.t.

 $d\omega = 0$, and $\omega \wedge \omega$ nowhere vanishing.

• Given $a \in H^2(X; \mathbb{R})$, consider the spaces

 $S_a(X) := \{ \text{symplectic } \omega \text{ with } [\omega] = a \}$

 $S_{\omega}(X) :=$ path-connected component of $S_{[\omega]}(X)$ that contains ω .

Question

(1) Is S_a(X) nonempty? (Existence of symplectic structures.)
(2) Is S_a(X) path-connected? (Uniqueness of symplectic structures up to isotopies.)
(3) Is S_ω(X) simply-connected? (Uniqueness of isotopies.)

- X: closed, smooth 4-manifold.
- A symplectic form on X is a 2-form $\omega \in \Omega^2(X)$ s.t.

 $d\omega = 0$, and $\omega \wedge \omega$ nowhere vanishing.

• Given $a \in H^2(X; \mathbb{R})$, consider the spaces

 $S_a(X) := \{ \text{symplectic } \omega \text{ with } [\omega] = a \}$

 $S_{\omega}(X) :=$ path-connected component of $S_{[\omega]}(X)$ that contains ω .

Question

(1) Is S_a(X) nonempty? (Existence of symplectic structures.)
(2) Is S_a(X) path-connected? (Uniqueness of symplectic structures up to isotopies.)
(3) Is S_ω(X) simply-connected? (Uniqueness of isotopies.)

• Powerful techniques: pseudo holomorphic curves, Seiberg-Witten theory.

- X: closed, smooth 4-manifold.
- A symplectic form on X is a 2-form $\omega \in \Omega^2(X)$ s.t.

 $d\omega = 0$, and $\omega \wedge \omega$ nowhere vanishing.

• Given $a \in H^2(X; \mathbb{R})$, consider the spaces

 $S_a(X) := \{ \text{symplectic } \omega \text{ with } [\omega] = a \}$

 $S_{\omega}(X) :=$ path-connected component of $S_{[\omega]}(X)$ that contains ω .

Question

(1) Is S_a(X) nonempty? (Existence of symplectic structures.)
(2) Is S_a(X) path-connected? (Uniqueness of symplectic structures up to isotopies.)
(3) Is S_ω(X) simply-connected? (Uniqueness of isotopies.)

- Powerful techniques: pseudo holomorphic curves, Seiberg-Witten theory.
- (1), (3) partly answered. (2) wide open.

- X: closed, smooth 4-manifold.
- A symplectic form on X is a 2-form $\omega \in \Omega^2(X)$ s.t.

 $d\omega = 0$, and $\omega \wedge \omega$ nowhere vanishing.

• Given $a \in H^2(X; \mathbb{R})$, consider the spaces

 $S_a(X) := \{ \text{symplectic } \omega \text{ with } [\omega] = a \}$

 $S_{\omega}(X) :=$ path-connected component of $S_{[\omega]}(X)$ that contains ω .

Question

(1) Is S_a(X) nonempty? (Existence of symplectic structures.)
(2) Is S_a(X) path-connected? (Uniqueness of symplectic structures up to isotopies.)
(3) Is S_ω(X) simply-connected? (Uniqueness of isotopies.)

- Powerful techniques: pseudo holomorphic curves, Seiberg-Witten theory.
- (1), (3) partly answered. (2) wide open.
- One goal today: Use Seiberg-Witten theory to study (3).

• Given (X, ω) , we consider the following groups

• Given (X, ω) , we consider the following groups

$$\begin{split} & \mathsf{Diff}(X) := \{\mathsf{diffeomorphisms on } X\} \\ & \mathsf{Diff}(X, [\omega]) := \{f \in \mathsf{Diff}(X, [\omega]) \mid f^*[\omega] = [\omega]\} \\ & \mathsf{Symp}(X, \omega) := \{\mathsf{symplectormorphisms on } (X, \omega)\} \end{split}$$

Question

(1) Is the inclusion $i: \text{Symp}(X, \omega) \to \text{Diff}(X, [\omega])$ a homotopy equivalence?

• Given (X, ω) , we consider the following groups

$$\begin{split} & \mathsf{Diff}(X) := \{\mathsf{diffeomorphisms on } X\} \\ & \mathsf{Diff}(X, [\omega]) := \{f \in \mathsf{Diff}(X, [\omega]) \mid f^*[\omega] = [\omega]\} \\ & \mathsf{Symp}(X, \omega) := \{\mathsf{symplectormorphisms on } (X, \omega)\} \end{split}$$

Question

(1) Is the inclusion $i: \text{Symp}(X, \omega) \to \text{Diff}(X, [\omega])$ a homotopy equivalence? (2) Is the map $i_{r,*}: \pi_r(\text{Symp}(X, \omega)) \to \pi_r(\text{Diff}(X, [\omega]))$ injective or surjective?

• Given (X, ω) , we consider the following groups

$$\begin{split} & \mathsf{Diff}(X) := \{\mathsf{diffeomorphisms on } X\} \\ & \mathsf{Diff}(X, [\omega]) := \{f \in \mathsf{Diff}(X, [\omega]) \mid f^*[\omega] = [\omega]\} \\ & \mathsf{Symp}(X, \omega) := \{\mathsf{symplectormorphisms on } (X, \omega)\} \end{split}$$

Question

(1) Is the inclusion $i: \text{Symp}(X, \omega) \to \text{Diff}(X, [\omega])$ a homotopy equivalence? (2) Is the map $i_{r,*}: \pi_r(\text{Symp}(X, \omega)) \to \pi_r(\text{Diff}(X, [\omega]))$ injective or surjective?

• Note that $\pi_r(\text{Diff}(X, [\omega])) = \pi_n(\text{Diff}(X))$ for $r \ge 1$.

• Given (X, ω) , we consider the following groups

$$\begin{split} & \mathsf{Diff}(X) := \{\mathsf{diffeomorphisms on } X\} \\ & \mathsf{Diff}(X, [\omega]) := \{f \in \mathsf{Diff}(X, [\omega]) \mid f^*[\omega] = [\omega]\} \\ & \mathsf{Symp}(X, \omega) := \{\mathsf{symplectormorphisms on } (X, \omega)\} \end{split}$$

Question

(1) Is the inclusion $i: \text{Symp}(X, \omega) \to \text{Diff}(X, [\omega])$ a homotopy equivalence? (2) Is the map $i_{r,*}: \pi_r(\text{Symp}(X, \omega)) \to \pi_r(\text{Diff}(X, [\omega]))$ injective or surjective?

- Note that $\pi_r(\text{Diff}(X, [\omega])) = \pi_n(\text{Diff}(X))$ for $r \ge 1$.
- By Moser's argument, we have a long exact sequence

$$\cdots \to \pi_2(\mathcal{S}_{\omega}(X)) \to \pi_1(\operatorname{Symp}(X,\omega)) \xrightarrow{i_{1,*}} \pi_1(\operatorname{Diff}(X)) \to \pi_1(\mathcal{S}_{\omega}(X)) \to \pi_0(\operatorname{Symp}(X,\omega)) \xrightarrow{i_{0,*}} \pi_0(\operatorname{Diff}(X,[\omega]))$$

• Given (X, ω) , we consider the following groups

$$\begin{split} & \mathsf{Diff}(X) := \{\mathsf{diffeomorphisms on } X\} \\ & \mathsf{Diff}(X, [\omega]) := \{f \in \mathsf{Diff}(X, [\omega]) \mid f^*[\omega] = [\omega]\} \\ & \mathsf{Symp}(X, \omega) := \{\mathsf{symplectormorphisms on } (X, \omega)\} \end{split}$$

Question

(1) Is the inclusion $i: \text{Symp}(X, \omega) \to \text{Diff}(X, [\omega])$ a homotopy equivalence? (2) Is the map $i_{r,*}: \pi_r(\text{Symp}(X, \omega)) \to \pi_r(\text{Diff}(X, [\omega]))$ injective or surjective?

- Note that $\pi_r(\text{Diff}(X, [\omega])) = \pi_n(\text{Diff}(X))$ for $r \ge 1$.
- By Moser's argument, we have a long exact sequence

$$\cdots \to \pi_2(\mathcal{S}_{\omega}(X)) \to \pi_1(\operatorname{Symp}(X,\omega)) \xrightarrow{i_{1,*}} \pi_1(\operatorname{Diff}(X)) \to \pi_1(\mathcal{S}_{\omega}(X)) \to \pi_0(\operatorname{Symp}(X,\omega)) \xrightarrow{i_{0,*}} \pi_0(\operatorname{Diff}(X,[\omega]))$$

• So Question (2) is a refined version of the uniqueness problem of isotopies.

Topology of Symp(X, ω) and Diff(X)

Topology of Symp(X, ω) and Diff(X)

• Finding the homotopy type of $Symp(X, \omega)$ is very difficult.

- Finding the homotopy type of $Symp(X, \omega)$ is very difficult.
- Only in very few examples, homotopy type of Symp (X, ω) is completely understood. E.g., \mathbb{CP}^2 , $S^2 \times S^2$, $\mathbb{CP}^2 \# n \overline{\mathbb{CP}^2}$ with $n \leq 5$ (Gromov, Abreu-McDuff, Anjos, Lalonde-Pinsonnault, Evans).

- Finding the homotopy type of ${\rm Symp}({\it X},\omega)$ is very difficult.
- Only in very few examples, homotopy type of Symp (X, ω) is completely understood. E.g., \mathbb{CP}^2 , $S^2 \times S^2$, $\mathbb{CP}^2 \# n \overline{\mathbb{CP}^2}$ with $n \leq 5$ (Gromov, Abreu-McDuff, Anjos, Lalonde-Pinsonnault, Evans).
- Even less is known about the topology of Diff(X).

- Finding the homotopy type of ${\rm Symp}({\it X},\omega)$ is very difficult.
- Only in very few examples, homotopy type of Symp (X, ω) is completely understood. E.g., \mathbb{CP}^2 , $S^2 \times S^2$, $\mathbb{CP}^2 \# n \overline{\mathbb{CP}^2}$ with $n \leq 5$ (Gromov, Abreu-McDuff, Anjos, Lalonde-Pinsonnault, Evans).
- Even less is known about the topology of Diff(X).
- We don't know a single closed 4-manifold X for which the homotopy type of Diff(X) is fully understood.

- Finding the homotopy type of ${\rm Symp}({\it X},\omega)$ is very difficult.
- Only in very few examples, homotopy type of Symp (X, ω) is completely understood. E.g., \mathbb{CP}^2 , $S^2 \times S^2$, $\mathbb{CP}^2 \# n \overline{\mathbb{CP}^2}$ with $n \leq 5$ (Gromov, Abreu-McDuff, Anjos, Lalonde-Pinsonnault, Evans).
- Even less is known about the topology of Diff(X).
- We don't know a single closed 4-manifold X for which the homotopy type of Diff(X) is fully understood.

Conjecture (Smale conjecture in dimension 4)

 ${\rm Diff}(S^4)\simeq {\it O}(5).$ Equivalently, ${\rm Diff}^+_\partial({\it D}^4)\simeq *$

- Finding the homotopy type of $Symp(X, \omega)$ is very difficult.
- Only in very few examples, homotopy type of Symp (X, ω) is completely understood. E.g., \mathbb{CP}^2 , $S^2 \times S^2$, $\mathbb{CP}^2 \# n \overline{\mathbb{CP}^2}$ with $n \leq 5$ (Gromov, Abreu-McDuff, Anjos, Lalonde-Pinsonnault, Evans).
- Even less is known about the topology of Diff(X).
- We don't know a single closed 4-manifold X for which the homotopy type of Diff(X) is fully understood.

Conjecture (Smale conjecture in dimension 4)

 ${\rm Diff}(S^4)\simeq {\it O}(5).$ Equivalently, ${\rm Diff}^+_\partial({\it D}^4)\simeq *$

Theorem (Watanabe (2018)) $\pi_r(\text{Diff}^+_a(D^4) \otimes \mathbb{Q} \neq 0 \text{ for } i = 1, 4, 8.$

- Finding the homotopy type of ${\rm Symp}({\it X},\omega)$ is very difficult.
- Only in very few examples, homotopy type of Symp (X, ω) is completely understood. E.g., \mathbb{CP}^2 , $S^2 \times S^2$, $\mathbb{CP}^2 \# n \overline{\mathbb{CP}^2}$ with $n \leq 5$ (Gromov, Abreu-McDuff, Anjos, Lalonde-Pinsonnault, Evans).
- Even less is known about the topology of Diff(X).
- We don't know a single closed 4-manifold X for which the homotopy type of Diff(X) is fully understood.

Conjecture (Smale conjecture in dimension 4)

 ${\rm Diff}(S^4)\simeq {\it O}(5).$ Equivalently, ${\rm Diff}^+_\partial({\it D}^4)\simeq *$

Theorem (Watanabe (2018))

 $\pi_r(\operatorname{Diff}^+_{\partial}(D^4)\otimes \mathbb{Q}\neq 0 \text{ for } i=1,4,8.$

• So it is **not** feasible to study $i_{r,*} : \pi_r(\text{Symp}(X, \omega)) \to \pi_r(\text{Diff}(X))$ by finding the homotopy type of $\text{Symp}(X, \omega)$ and Diff(X).

II. Non-symplectic loop of diffeomorphisms

• Want to study $i_{r,*}$: $\pi_r(\text{Symp}(X, \omega)) \rightarrow \pi_r(\text{Diff}(X, [\omega]))$.

- Want to study $i_{r,*}$: $\pi_r(\text{Symp}(X, \omega)) \rightarrow \pi_r(\text{Diff}(X, [\omega]))$.
- Expectation: $\text{Diff}(X, [\omega])$ is essentially "larger" than $\text{Symp}(X, \omega)$.

- Want to study $i_{r,*}$: $\pi_r(\text{Symp}(X, \omega)) \rightarrow \pi_r(\text{Diff}(X, [\omega]))$.
- Expectation: $\text{Diff}(X, [\omega])$ is essentially "larger" than $\text{Symp}(X, \omega)$.
- Open question: Is $i_{0,*}$ always surjective/always not surjective?

- Want to study $i_{r,*}$: $\pi_r(\text{Symp}(X, \omega)) \rightarrow \pi_r(\text{Diff}(X, [\omega]))$.
- Expectation: $\text{Diff}(X, [\omega])$ is essentially "larger" than $\text{Symp}(X, \omega)$.
- Open question: Is $i_{0,*}$ always surjective/always not surjective?
- Is i_{0,*} always injective?

- Want to study $i_{r,*}$: $\pi_r(\text{Symp}(X, \omega)) \to \pi_r(\text{Diff}(X, [\omega]))$.
- Expectation: $\text{Diff}(X, [\omega])$ is essentially "larger" than $\text{Symp}(X, \omega)$.
- Open question: Is i_{0,*} always surjective/always not surjective?
- Is i_{0,*} always injective? No!

Theorem (Seidel (1997))

Let (X, ω) be a minimal and irrational symplectic 4-manifold with $b_1(X) = 0$ and $\dim(H_2(X; \mathbb{Z}/2)) \ge 3$. Suppose X contains an embedded Lagrangian 2-sphere S. Then square of the Dehn twist along S gives a nonzero element in the kernel $i_{0,*}$.

- Want to study $i_{r,*}$: $\pi_r(\text{Symp}(X, \omega)) \to \pi_r(\text{Diff}(X, [\omega]))$.
- Expectation: $\text{Diff}(X, [\omega])$ is essentially "larger" than $\text{Symp}(X, \omega)$.
- Open question: Is i_{0,*} always surjective/always not surjective?
- Is i_{0,*} always injective? No!

Theorem (Seidel (1997))

Let (X, ω) be a minimal and irrational symplectic 4-manifold with $b_1(X) = 0$ and $\dim(H_2(X; \mathbb{Z}/2)) \ge 3$. Suppose X contains an embedded Lagrangian 2-sphere S. Then square of the Dehn twist along S gives a nonzero element in the kernel $i_{0,*}$.

 Seidel's proof uses deep results in quantum cohomology ring QH(X) and the Floer homomlogy HF(φ) for φ ∈ Symp(X,ω). It applies to large family of symplectic manifolds. (e.g. complete intersections in CPⁿ⁺² other than CP² or CP¹ × CP¹)

Non-symplecitic loop of diffeomorphisms
For many complex surfaces (X, ω) (including hypersurfaces in \mathbb{CP}^3 with degree $\neq 1$ or 4), the map $i_{1,*} : \pi_1(\text{Symp}(X, \omega)) \to \pi_1(\text{Diff}(X))$ is not surjective.

For many complex surfaces (X, ω) (including hypersurfaces in \mathbb{CP}^3 with degree $\neq 1$ or 4), the map $i_{1,*} : \pi_1(\text{Symp}(X, \omega)) \to \pi_1(\text{Diff}(X))$ is not surjective.

• The proof uses the family Seiberg-Witten theory (Donaldson, Ruberman, Li-Liu, Nakamura, Baraglia-Konno....) and builds on previous work of Kronheimer.

For many complex surfaces (X, ω) (including hypersurfaces in \mathbb{CP}^3 with degree $\neq 1$ or 4), the map $i_{1,*} : \pi_1(\text{Symp}(X, \omega)) \to \pi_1(\text{Diff}(X))$ is not surjective.

• The proof uses the family Seiberg-Witten theory (Donaldson, Ruberman, Li-Liu, Nakamura, Baraglia-Konno....) and builds on previous work of Kronheimer.

Theorem (L. (2021))

Let (X, ω) be any symplectic 4-manifold that contains a smoothly embedded S^2 with self-intersection -1 or -2. Then $i_{1,*}$ is not surjective.

For many complex surfaces (X, ω) (including hypersurfaces in \mathbb{CP}^3 with degree $\neq 1$ or 4), the map $i_{1,*} : \pi_1(\text{Symp}(X, \omega)) \to \pi_1(\text{Diff}(X))$ is not surjective.

• The proof uses the family Seiberg-Witten theory (Donaldson, Ruberman, Li-Liu, Nakamura, Baraglia-Konno....) and builds on previous work of Kronheimer.

Theorem (L. (2021))

Let (X, ω) be any symplectic 4-manifold that contains a smoothly embedded S^2 with self-intersection -1 or -2. Then $i_{1,*}$ is not surjective.

• I.e., whenever there is a smoothly embedded 2-sphere (not necessarily Lagrangian or symplectic) of self-intersection -1 or -2, there is a loop of diffeomorphism which can not be deformed to loop of symplectomorphisms.

For many complex surfaces (X, ω) (including hypersurfaces in \mathbb{CP}^3 with degree $\neq 1$ or 4), the map $i_{1,*} : \pi_1(\text{Symp}(X, \omega)) \to \pi_1(\text{Diff}(X))$ is not surjective.

• The proof uses the family Seiberg-Witten theory (Donaldson, Ruberman, Li-Liu, Nakamura, Baraglia-Konno....) and builds on previous work of Kronheimer.

Theorem (L. (2021))

Let (X, ω) be any symplectic 4-manifold that contains a smoothly embedded S^2 with self-intersection -1 or -2. Then $i_{1,*}$ is not surjective.

- I.e., whenever there is a smoothly embedded 2-sphere (not necessarily Lagrangian or symplectic) of self-intersection -1 or -2, there is a loop of diffeomorphism which can not be deformed to loop of symplectomorphisms.
- The case of self-intersection -1 confirms a conjectured by McDuff.

For many complex surfaces (X, ω) (including hypersurfaces in \mathbb{CP}^3 with degree $\neq 1$ or 4), the map $i_{1,*} : \pi_1(\text{Symp}(X, \omega)) \to \pi_1(\text{Diff}(X))$ is not surjective.

• The proof uses the family Seiberg-Witten theory (Donaldson, Ruberman, Li-Liu, Nakamura, Baraglia-Konno....) and builds on previous work of Kronheimer.

Theorem (L. (2021))

Let (X, ω) be any symplectic 4-manifold that contains a smoothly embedded S^2 with self-intersection -1 or -2. Then $i_{1,*}$ is not surjective.

- I.e., whenever there is a smoothly embedded 2-sphere (not necessarily Lagrangian or symplectic) of self-intersection -1 or -2, there is a loop of diffeomorphism which can not be deformed to loop of symplectomorphisms.
- $\bullet\,$ The case of self-intersection -1 confirms a conjectured by McDuff.
- New ingredient: a new gluing formula for the family Seiberg-Witten invariant.

$$\cdots \to \pi_1(\operatorname{Symp}(X,\omega)) \xrightarrow{i_{1,*}} \pi_1(\operatorname{Diff}(X)) \xrightarrow{p_*} \pi_1(\mathcal{S}_{[\omega]}(X)) \xrightarrow{\partial} \pi_0(\operatorname{Symp}(X,\omega)) \xrightarrow{i_{0,*}} \pi_0(\operatorname{Diff}(X,[\omega]))$$

$$\cdots \to \pi_1(\operatorname{Symp}(X,\omega)) \xrightarrow{\iota_1,*} \pi_1(\operatorname{Diff}(X)) \xrightarrow{p_*} \pi_1(\mathcal{S}_{[\omega]}(X)) \xrightarrow{\partial} \pi_0(\operatorname{Symp}(X,\omega)) \xrightarrow{i_0,*} \pi_0(\operatorname{Diff}(X,[\omega]))$$

 Assume (X, ω) contains an Lagragian 2-sphere S and satisfies the homological conditions of Seidel's theorem. Then ∃ 0 ≠ τ²_S ∈ ker i_{0,*}.

$$\cdots \to \pi_1(\operatorname{Symp}(X,\omega)) \xrightarrow{\iota_{1,*}} \pi_1(\operatorname{Diff}(X)) \xrightarrow{p_*} \pi_1(\mathcal{S}_{[\omega]}(X)) \xrightarrow{\partial} \pi_0(\operatorname{Symp}(X,\omega)) \xrightarrow{i_{0,*}} \pi_0(\operatorname{Diff}(X,[\omega]))$$

- Assume (X, ω) contains an Lagragian 2-sphere S and satisfies the homological conditions of Seidel's theorem. Then ∃ 0 ≠ τ²_S ∈ ker i_{0,*}.
- Kronheimer found $[\alpha], [\beta] \in \pi_1(\mathcal{S}_{[\omega]}(X)) \text{ s.t. } \partial([\alpha]) = \partial([\beta]) = \tau_S^2.$

$$\cdots \to \pi_1(\operatorname{Symp}(X,\omega)) \xrightarrow{\iota_{1,*}} \pi_1(\operatorname{Diff}(X)) \xrightarrow{\rho_*} \pi_1(\mathcal{S}_{[\omega]}(X)) \xrightarrow{\partial} \pi_0(\operatorname{Symp}(X,\omega)) \xrightarrow{i_{0,*}} \pi_0(\operatorname{Diff}(X,[\omega]))$$

- Assume (X, ω) contains an Lagragian 2-sphere S and satisfies the homological conditions of Seidel's theorem. Then ∃ 0 ≠ τ²_S ∈ ker i_{0,*}.
- Kronheimer found $[\alpha], [\beta] \in \pi_1(\mathcal{S}_{[\omega]}(X))$ s.t. $\partial([\alpha]) = \partial([\beta]) = \tau_S^2$.
- For any r > 0, Kronheimer found examples with $\pi_{2r-1}(\mathcal{S}_{[\omega]}(X)) \neq 0$.

$$\cdots \to \pi_1(\operatorname{Symp}(X,\omega)) \xrightarrow{\iota_{1,*}} \pi_1(\operatorname{Diff}(X)) \xrightarrow{\rho_*} \pi_1(\mathcal{S}_{[\omega]}(X)) \xrightarrow{\partial} \pi_0(\operatorname{Symp}(X,\omega)) \xrightarrow{i_{0,*}} \pi_0(\operatorname{Diff}(X,[\omega]))$$

- Assume (X, ω) contains an Lagragian 2-sphere S and satisfies the homological conditions of Seidel's theorem. Then ∃ 0 ≠ τ²_S ∈ ker i_{0,*}.
- Kronheimer found $[\alpha], [\beta] \in \pi_1(\mathcal{S}_{[\omega]}(X))$ s.t. $\partial([\alpha]) = \partial([\beta]) = \tau_S^2$.
- For any r > 0, Kronheimer found examples with $\pi_{2r-1}(\mathcal{S}_{[\omega]}(X)) \neq 0$.
- $i_{1,*}$ not surjective (our theorem) $\implies \exists$ a loop $[\gamma] \in \ker \partial \subset \pi_1(\mathcal{S}_{[\omega]}(X)).$

$$\cdots \to \pi_1(\operatorname{Symp}(X,\omega)) \xrightarrow{\iota_1,*} \pi_1(\operatorname{Diff}(X)) \xrightarrow{\rho_*} \pi_1(\mathcal{S}_{[\omega]}(X)) \xrightarrow{\partial} \pi_0(\operatorname{Symp}(X,\omega)) \xrightarrow{i_{0,*}} \pi_0(\operatorname{Diff}(X,[\omega]))$$

- Assume (X, ω) contains an Lagragian 2-sphere S and satisfies the homological conditions of Seidel's theorem. Then ∃ 0 ≠ τ²_S ∈ ker i_{0,*}.
- Kronheimer found $[\alpha], [\beta] \in \pi_1(\mathcal{S}_{[\omega]}(X)) \text{ s.t. } \partial([\alpha]) = \partial([\beta]) = \tau_S^2.$
- For any r > 0, Kronheimer found examples with $\pi_{2r-1}(\mathcal{S}_{[\omega]}(X)) \neq 0$.
- $i_{1,*}$ not surjective (our theorem) $\implies \exists$ a loop $[\gamma] \in \ker \partial \subset \pi_1(\mathcal{S}_{[\omega]}(X)).$
- When S is Lagrangian, $[\gamma] = [\alpha] [\beta]$.

$$\cdots \to \pi_1(\operatorname{Symp}(X,\omega)) \xrightarrow{\iota_1,*} \pi_1(\operatorname{Diff}(X)) \xrightarrow{\rho_*} \pi_1(\mathcal{S}_{[\omega]}(X)) \xrightarrow{\partial} \pi_0(\operatorname{Symp}(X,\omega)) \xrightarrow{i_0,*} \pi_0(\operatorname{Diff}(X,[\omega]))$$

- Assume (X, ω) contains an Lagragian 2-sphere S and satisfies the homological conditions of Seidel's theorem. Then ∃ 0 ≠ τ²_S ∈ ker i_{0,*}.
- Kronheimer found $[\alpha], [\beta] \in \pi_1(\mathcal{S}_{[\omega]}(X)) \text{ s.t. } \partial([\alpha]) = \partial([\beta]) = \tau_S^2.$
- For any r > 0, Kronheimer found examples with $\pi_{2r-1}(\mathcal{S}_{[\omega]}(X)) \neq 0$.
- $i_{1,*}$ not surjective (our theorem) $\implies \exists$ a loop $[\gamma] \in \ker \partial \subset \pi_1(\mathcal{S}_{[\omega]}(X)).$
- When S is Lagrangian, $[\gamma] = [\alpha] [\beta]$.
- Essential difference: When we perturb $[\omega]$, α, β are fragile but γ is robust.

$$\cdots \to \pi_1(\operatorname{Symp}(X,\omega)) \xrightarrow{\iota_1,*} \pi_1(\operatorname{Diff}(X)) \xrightarrow{p_*} \pi_1(\mathcal{S}_{[\omega]}(X)) \xrightarrow{\partial} \pi_0(\operatorname{Symp}(X,\omega)) \xrightarrow{i_{0,*}} \pi_0(\operatorname{Diff}(X,[\omega]))$$

- Assume (X, ω) contains an Lagragian 2-sphere S and satisfies the homological conditions of Seidel's theorem. Then ∃ 0 ≠ τ²_S ∈ ker i_{0,*}.
- Kronheimer found $[\alpha], [\beta] \in \pi_1(\mathcal{S}_{[\omega]}(X)) \text{ s.t. } \partial([\alpha]) = \partial([\beta]) = \tau_S^2.$
- For any r > 0, Kronheimer found examples with $\pi_{2r-1}(\mathcal{S}_{[\omega]}(X)) \neq 0$.
- $i_{1,*}$ not surjective (our theorem) $\implies \exists$ a loop $[\gamma] \in \ker \partial \subset \pi_1(\mathcal{S}_{[\omega]}(X)).$
- When S is Lagrangian, $[\gamma] = [\alpha] [\beta]$.
- Essential difference: When we perturb $[\omega]$, α, β are fragile but γ is robust.

$$\begin{split} \Omega_{[\omega^+]}(X) \text{ with } & \int_S \omega^+ > 0 \\ \Omega_{[\omega]}(X) \text{ with } \omega|_S &= 0 \\ \Omega_{[\omega^-]}(X) \text{ with } & \int_S \omega^- < 0 \end{split}$$

The space of symplectic forms is not simply-connected

The space of symplectic forms is not simply-connected

Corollary

Let (X, ω) be a symplectic 4-manifold that contain a smoothly embedded S^2 with self-intersection -2 or -1. Then $\pi_1(\mathcal{S}_{[\omega]}(X)) \neq 0$.

Let (X, ω) be a symplectic 4-manifold that contain a smoothly embedded S^2 with self-intersection -2 or -1. Then $\pi_1(\mathcal{S}_{[\omega]}(X)) \neq 0$.

• In the case of -1-sphere, we can prove a stronger result:

Theorem (L. (2021))

Let (X, ω) be a non-minimal symplectic 4-manifold with $b_2^+(X) \neq 3$. Then $\pi_1(\mathcal{S}(X)) \neq 0$. ($\mathcal{S}(X)$ denotes the space of **all** symplectic forms.)

Let (X, ω) be a symplectic 4-manifold that contain a smoothly embedded S^2 with self-intersection -2 or -1. Then $\pi_1(\mathcal{S}_{[\omega]}(X)) \neq 0$.

• In the case of -1-sphere, we can prove a stronger result:

Theorem (L. (2021))

Let (X, ω) be a non-minimal symplectic 4-manifold with $b_2^+(X) \neq 3$. Then $\pi_1(\mathcal{S}(X)) \neq 0$. ($\mathcal{S}(X)$ denotes the space of **all** symplectic forms.)

• X is non-minimal means that $X \cong X' \# \overline{\mathbb{CP}}^2$.

Let (X, ω) be a symplectic 4-manifold that contain a smoothly embedded S^2 with self-intersection -2 or -1. Then $\pi_1(\mathcal{S}_{[\omega]}(X)) \neq 0$.

• In the case of -1-sphere, we can prove a stronger result:

Theorem (L. (2021))

Let (X, ω) be a non-minimal symplectic 4-manifold with $b_2^+(X) \neq 3$. Then $\pi_1(\mathcal{S}(X)) \neq 0$. ($\mathcal{S}(X)$ denotes the space of **all** symplectic forms.)

- X is non-minimal means that $X \cong X' \# \overline{\mathbb{CP}}^2$.
- These loops are are contractible in the space of non-degenerate 2-forms.

Let (X, ω) be a symplectic 4-manifold that contain a smoothly embedded S^2 with self-intersection -2 or -1. Then $\pi_1(\mathcal{S}_{[\omega]}(X)) \neq 0$.

• In the case of -1-sphere, we can prove a stronger result:

Theorem (L. (2021))

Let (X, ω) be a non-minimal symplectic 4-manifold with $b_2^+(X) \neq 3$. Then $\pi_1(\mathcal{S}(X)) \neq 0$. ($\mathcal{S}(X)$ denotes the space of **all** symplectic forms.)

- X is non-minimal means that $X \cong X' \# \overline{\mathbb{CP}}^2$.
- These loops are are contractible in the space of non-degenerate 2-forms.
- The condition $b_2^+(X) \neq 3$ is related to the wall-crossing phenomena for family Seiberg-Witten invariants.

III. Non-symplectic families of smooth 4-manifolds

• Given $\gamma: S^1 \to \operatorname{Diff}(X)$, we have a diffeomorphism

 $\widetilde{\gamma}: S^1 \times X \to S^1 \times X$ defined by $\widetilde{\gamma}(t, x) = (t, \gamma(t)x).$

• Given $\gamma: S^1 \to \text{Diff}(X)$, we have a diffeomorphism

 $\widetilde{\gamma}: S^1 \times X \to S^1 \times X \text{ defined by } \widetilde{\gamma}(t,x) = (t,\gamma(t)x).$

$$B = S^2$$
, $E_{\gamma} = (D^2 \times X) \cup_{\widetilde{\gamma}} (D^2 \times X)$.

• Given $\gamma: S^1 \to \text{Diff}(X)$, we have a diffeomorphism

 $\widetilde{\gamma}: S^1 \times X \to S^1 \times X$ defined by $\widetilde{\gamma}(t, x) = (t, \gamma(t)x)$.

• We form the bundle $X \hookrightarrow E_{\gamma} \xrightarrow{p} B$ by setting

$$B = S^2$$
, $E_{\gamma} = (D^2 \times X) \cup_{\widetilde{\gamma}} (D^2 \times X)$.

• We treat E_{γ} as a family $\{X_b\}_{b\in B}$ of 4-manifolds, where $X_b = p^{-1}(b)$.

• Given $\gamma: S^1 \to \text{Diff}(X)$, we have a diffeomorphism

 $\widetilde{\gamma}: S^1 \times X \to S^1 \times X$ defined by $\widetilde{\gamma}(t, x) = (t, \gamma(t)x)$.

$$B = S^2$$
, $E_{\gamma} = (D^2 \times X) \cup_{\widetilde{\gamma}} (D^2 \times X)$.

- We treat E_{γ} as a family $\{X_b\}_{b\in B}$ of 4-manifolds, where $X_b = p^{-1}(b)$.
- γ is homotopic to $\gamma' \iff E_{\gamma}$ is isomorphic to $E_{\gamma'}$ as bundles.

• Given $\gamma: S^1 \to \text{Diff}(X)$, we have a diffeomorphism

 $\widetilde{\gamma}: S^1 \times X \to S^1 \times X$ defined by $\widetilde{\gamma}(t, x) = (t, \gamma(t)x)$.

$$B = S^2$$
, $E_{\gamma} = (D^2 \times X) \cup_{\widetilde{\gamma}} (D^2 \times X)$.

- We treat E_{γ} as a family $\{X_b\}_{b\in B}$ of 4-manifolds, where $X_b = p^{-1}(b)$.
- γ is homotopic to $\gamma' \iff E_{\gamma}$ is isomorphic to $E_{\gamma'}$ as bundles.
- $[\gamma] \in \text{Image}(\pi_1(\text{Symp}(X, \omega)) \xrightarrow{i_{1,*}} \pi_1(\text{Diff}(X))) \iff$ There is a fiberwise symplectic structure $\{\omega_b\}_{b \in S^2} \subset S_{\omega}(X)$ on $\{X_b\}_{b \in S^2}$.

• Given $\gamma: S^1 \to \operatorname{Diff}(X)$, we have a diffeomorphism

 $\widetilde{\gamma}: S^1 \times X \to S^1 \times X$ defined by $\widetilde{\gamma}(t, x) = (t, \gamma(t)x)$.

$$B = S^2$$
, $E_{\gamma} = (D^2 \times X) \cup_{\widetilde{\gamma}} (D^2 \times X)$.

- We treat E_{γ} as a family $\{X_b\}_{b\in B}$ of 4-manifolds, where $X_b = p^{-1}(b)$.
- γ is homotopic to $\gamma' \iff E_{\gamma}$ is isomorphic to $E_{\gamma'}$ as bundles.
- $[\gamma] \in \text{Image}(\pi_1(\text{Symp}(X, \omega)) \xrightarrow{i_{1,*}} \pi_1(\text{Diff}(X))) \iff$ There is a fiberwise symplectic structure $\{\omega_b\}_{b \in S^2} \subset S_\omega(X)$ on $\{X_b\}_{b \in S^2}$.
- To show i_{1,*} is not surjective, it suffices to establish non-symplectic families over S².

• An ADE singularity (Du Val singularity) is an isolated surface singularity locally modelled on $\Sigma = \mathbb{C}^2/\Gamma$. Here Γ is a finite subgroup of SU(2) = Sp(1), acting as the left multiplication on $\mathbb{H} = \mathbb{C}^2$.

- An ADE singularity (Du Val singularity) is an isolated surface singularity locally modelled on $\Sigma = \mathbb{C}^2/\Gamma$. Here Γ is a finite subgroup of SU(2) = Sp(1), acting as the left multiplication on $\mathbb{H} = \mathbb{C}^2$.
- Such singularity has a unique minimal resolution $r: \widetilde{\Sigma} \to \Sigma$.

- An ADE singularity (Du Val singularity) is an isolated surface singularity locally modelled on $\Sigma = \mathbb{C}^2/\Gamma$. Here Γ is a finite subgroup of SU(2) = Sp(1), acting as the left multiplication on $\mathbb{H} = \mathbb{C}^2$.
- Such singularity has a unique minimal resolution $r: \widetilde{\Sigma} \to \Sigma$.
- $r^{-1}(0)$ is a union of (-2)-spheres. They intersect each other following the shape of the Dynkin diagram of ADE type.

- An ADE singularity (Du Val singularity) is an isolated surface singularity locally modelled on $\Sigma = \mathbb{C}^2/\Gamma$. Here Γ is a finite subgroup of SU(2) = Sp(1), acting as the left multiplication on $\mathbb{H} = \mathbb{C}^2$.
- Such singularity has a unique minimal resolution $r: \widetilde{\Sigma} \to \Sigma$.
- $r^{-1}(0)$ is a union of (-2)-spheres. They intersect each other following the shape of the Dynkin diagram of ADE type.

• Kronheimer proved that $\tilde{\Sigma}$ is an ALE space (i.e. it admits a hyper-Kähler metric that approaches the Euclidian metric at infinity.)

The ADE families

The ADE families

Let B = {ai + bj + ck ∈ ℍ | a² + b² + c² = 1} = S². Each point b ∈ B gives a complex structure J_b on ℍ, with J_b(h) = h ⋅ b.
- Let B = {ai + bj + ck ∈ ℍ | a² + b² + c² = 1} = S². Each point b ∈ B gives a complex structure J_b on ℍ, with J_b(h) = h ⋅ b.
- Take the product family B × Σ. Resolve the fiber {b} × Σ using J_b. This gives a nontrivial family Σ̃ ↔ E₁ → B.

- Let B = {ai + bj + ck ∈ ℍ | a² + b² + c² = 1} = S². Each point b ∈ B gives a complex structure J_b on ℍ, with J_b(h) = h ⋅ b.
- Take the product family B × Σ. Resolve the fiber {b} × Σ using J_b. This gives a nontrivial family Σ̃ ↔ E₁ → B.
- Let X be a 4-manifold that contain an ADE configuration of smoothly embedded -2-spheres. (E.g. X is a minimal resolution an algebraic surface with an ADE singularity). Then an open neighborhood of these spheres is diffeomorphic to $\tilde{\Sigma}$. And $X = \tilde{\Sigma} \cup (X \setminus \tilde{\Sigma})$.

- Let B = {ai + bj + ck ∈ ℍ | a² + b² + c² = 1} = S². Each point b ∈ B gives a complex structure J_b on ℍ, with J_b(h) = h ⋅ b.
- Take the product family B × Σ. Resolve the fiber {b} × Σ using J_b. This gives a nontrivial family Σ̃ ↔ E₁ → B.
- Let X be a 4-manifold that contain an ADE configuration of smoothly embedded -2-spheres. (E.g. X is a minimal resolution an algebraic surface with an ADE singularity). Then an open neighborhood of these spheres is diffeomorphic to $\tilde{\Sigma}$. And $X = \tilde{\Sigma} \cup (X \setminus \tilde{\Sigma})$.
- We can form the family $E = E_1 \cup (B \times (X \setminus \widetilde{\Sigma}))$, called an **ADE** family.

- Let B = {ai + bj + ck ∈ ℍ | a² + b² + c² = 1} = S². Each point b ∈ B gives a complex structure J_b on ℍ, with J_b(h) = h ⋅ b.
- Take the product family $B \times \Sigma$. Resolve the fiber $\{b\} \times \Sigma$ using J_b . This gives a nontrivial family $\widetilde{\Sigma} \hookrightarrow E_1 \to B$.
- Let X be a 4-manifold that contain an ADE configuration of smoothly embedded -2-spheres. (E.g. X is a minimal resolution an algebraic surface with an ADE singularity). Then an open neighborhood of these spheres is diffeomorphic to $\tilde{\Sigma}$. And $X = \tilde{\Sigma} \cup (X \setminus \tilde{\Sigma})$.
- We can form the family $E = E_1 \cup (B \times (X \setminus \widetilde{\Sigma}))$, called an **ADE** family.

Theorem (L.)

Let $\{\omega_b\}$ be a family of minimal symplectic structure on an ADE family $X \hookrightarrow E \to S^2$. Then at least one of the following two situation happens:

- For any a ∈ H₂(Σ̃; Z) with a · a = -2, the function S² → R defined by b ↦ ⟨[ω_b], a⟩ takes both positive and negative values. Or,
- $b^+(X) = 3$, $c_1(K)$ is torsion, and $\{\omega_b\}$ is a winding family.

(Here K is the canonical bundle.) In particular, the ADE family never admits minimal fiberwise symplectic structures in a constant cohomology class.

• A similar idea works for blow up. Take $x \in X$. Then

{orientation compatible almost complex structure at $T_x X$ } $\simeq S^2$.

• A similar idea works for blow up. Take $x \in X$. Then

{orientation compatible almost complex structure at $T_X X$ } $\simeq S^2$.

• A specific family of almost complex structure $\{J_b\}_{b\in S^2}$ can be obtained by fixing an isomorphism $T_x X \cong \mathbb{H}$.

• A similar idea works for blow up. Take $x \in X$. Then

{orientation compatible almost complex structure at $T_X X$ } $\simeq S^2$.

- A specific family of almost complex structure $\{J_b\}_{b\in S^2}$ can be obtained by fixing an isomorphism $T_x X \cong \mathbb{H}$.
- We blow up the product family S² × X fiberwisely at x, using {J_b}. This gives the blow up family (X# CP²) → E → S²

• A similar idea works for blow up. Take $x \in X$. Then

{orientation compatible almost complex structure at $T_X X$ } $\simeq S^2$.

- A specific family of almost complex structure $\{J_b\}_{b\in S^2}$ can be obtained by fixing an isomorphism $T_x X \cong \mathbb{H}$.
- We blow up the product family S² × X fiberwisely at x, using {J_b}. This gives the blow up family (X# CP²) → E → S²

Theorem (L.)

The blown-up family $(X \# \overline{\mathbb{CP}}^2) \hookrightarrow E \to S^2$ doesn't admit a fiberwise symplectic structure $\{\omega_b\}_{b \in S^2}$ such that:

• A similar idea works for blow up. Take $x \in X$. Then

{orientation compatible almost complex structure at $T_X X$ } $\simeq S^2$.

- A specific family of almost complex structure $\{J_b\}_{b\in S^2}$ can be obtained by fixing an isomorphism $T_x X \cong \mathbb{H}$.
- We blow up the product family S² × X fiberwisely at x, using {J_b}. This gives the blow up family (X# CP²) → E → S²

Theorem (L.)

The blown-up family $(X \# \overline{\mathbb{CP}}^2) \hookrightarrow E \to S^2$ doesn't admit a fiberwise symplectic structure $\{\omega_b\}_{b \in S^2}$ such that:

• A similar idea works for blow up. Take $x \in X$. Then

{orientation compatible almost complex structure at $T_X X$ } $\simeq S^2$.

- A specific family of almost complex structure $\{J_b\}_{b\in S^2}$ can be obtained by fixing an isomorphism $T_x X \cong \mathbb{H}$.
- We blow up the product family S² × X fiberwisely at x, using {J_b}. This gives the blow up family (X# CP²) → E → S²

Theorem (L.)

The blown-up family $(X \# \overline{\mathbb{CP}}^2) \hookrightarrow E \to S^2$ doesn't admit a fiberwise symplectic structure $\{\omega_b\}_{b \in S^2}$ such that:

- ⟨c₁(K), D⟩ = ±1. D = CP¹ is the exceptional divisor. (Automatically satisfied unless the fiber is rational or ruled with b⁺₂ = 1.)
- **2** $[\omega_b] \in H^2(X; \mathbb{R})$ is independent with b.

• A similar idea works for blow up. Take $x \in X$. Then

{orientation compatible almost complex structure at $T_x X$ } $\simeq S^2$.

- A specific family of almost complex structure $\{J_b\}_{b\in S^2}$ can be obtained by fixing an isomorphism $T_x X \cong \mathbb{H}$.
- We blow up the product family S² × X fiberwisely at x, using {J_b}. This gives the blow up family (X# CP²) → E → S²

Theorem (L.)

The blown-up family $(X \# \overline{\mathbb{CP}}^2) \hookrightarrow E \to S^2$ doesn't admit a fiberwise symplectic structure $\{\omega_b\}_{b \in S^2}$ such that:

⟨c₁(K), D⟩ = ±1. D = CP¹ is the exceptional divisor. (Automatically satisfied unless the fiber is rational or ruled with b⁺₂ = 1.)

② $[\omega_b] \in H^2(X; \mathbb{R})$ is independent with b.

Furthermore, if $b_2^+(X) \neq 3$, then condition (2) can be dropped.

• A similar idea works for blow up. Take $x \in X$. Then

{orientation compatible almost complex structure at $T_X X$ } $\simeq S^2$.

- A specific family of almost complex structure $\{J_b\}_{b\in S^2}$ can be obtained by fixing an isomorphism $T_x X \cong \mathbb{H}$.
- We blow up the product family S² × X fiberwisely at x, using {J_b}. This gives the blow up family (X# CP²) → E → S²

Theorem (L.)

The blown-up family $(X \# \overline{\mathbb{CP}}^2) \hookrightarrow E \to S^2$ doesn't admit a fiberwise symplectic structure $\{\omega_b\}_{b \in S^2}$ such that:

⟨c₁(K), D⟩ = ±1. D = CP¹ is the exceptional divisor. (Automatically satisfied unless the fiber is rational or ruled with b⁺₂ = 1.)

② $[\omega_b] \in H^2(X; \mathbb{R})$ is independent with b.

Furthermore, if $b_2^+(X) \neq 3$, then condition (2) can be dropped.

• McDuff conjectured that a similar result holds in all dimensions.

IV. A gluing formula for family Seiberg-Witten invariants.

• Consider a smooth fiber bundle $X \hookrightarrow E \xrightarrow{p} B$.

- Consider a smooth fiber bundle $X \hookrightarrow E \xrightarrow{p} B$.
- Pick a family Spin^c-structure \mathfrak{s}_{E} . Choose metrics $\{g_b\}_{b\in B}$ and perturbations $\{\mu_b\}_{b\in B}$ on each fiber X_b . Here $\mu_b \in \Omega^2(X_b)$.

- Consider a smooth fiber bundle $X \hookrightarrow E \xrightarrow{p} B$.
- Pick a family Spin^c-structure \mathfrak{s}_{E} . Choose metrics $\{g_b\}_{b\in B}$ and perturbations $\{\mu_b\}_{b\in B}$ on each fiber X_b . Here $\mu_b \in \Omega^2(X_b)$.
- We study the Seiberg-Witten equations on the fiber X_b

$$F^+_{A^+_b} =
ho^{-1}(\phi_b \phi^*_b)_0 + i\mu_b, \quad D^+_{A_b} \phi_b = 0.$$

- Consider a smooth fiber bundle $X \hookrightarrow E \xrightarrow{p} B$.
- Pick a family Spin^c-structure \mathfrak{s}_{E} . Choose metrics $\{g_b\}_{b\in B}$ and perturbations $\{\mu_b\}_{b\in B}$ on each fiber X_b . Here $\mu_b \in \Omega^2(X_b)$.
- We study the Seiberg-Witten equations on the fiber X_b

$$F_{A_b^+}^+ = \rho^{-1} (\phi_b \phi_b^*)_0 + i \mu_b, \quad D_{A_b}^+ \phi_b = 0.$$

• Consider the parametrized moduli space

 $\mathcal{M} := \{(b, A_b, \phi_b) \mid (A_b, \phi_b) \text{ solves the S.W. eqs on } X_b\}/\text{gauge transformations.}$

- Consider a smooth fiber bundle $X \hookrightarrow E \xrightarrow{p} B$.
- Pick a family Spin^c-structure \mathfrak{s}_{E} . Choose metrics $\{g_b\}_{b\in B}$ and perturbations $\{\mu_b\}_{b\in B}$ on each fiber X_b . Here $\mu_b \in \Omega^2(X_b)$.
- We study the Seiberg-Witten equations on the fiber X_b

$$F_{A_b^+}^+ = \rho^{-1} (\phi_b \phi_b^*)_0 + i \mu_b, \quad D_{A_b}^+ \phi_b = 0.$$

• Consider the parametrized moduli space

 $\mathcal{M} := \{(b, A_b, \phi_b) \mid (A_b, \phi_b) \text{ solves the S.W. eqs on } X_b\}/\text{gauge transformations.}$

For generic choice of ({g_b}, {μ_b}), M is a compact, smooth manifold of dimension d(s_E).

- Consider a smooth fiber bundle $X \hookrightarrow E \xrightarrow{p} B$.
- Pick a family Spin^c-structure \mathfrak{s}_{E} . Choose metrics $\{g_b\}_{b\in B}$ and perturbations $\{\mu_b\}_{b\in B}$ on each fiber X_b . Here $\mu_b \in \Omega^2(X_b)$.
- We study the Seiberg-Witten equations on the fiber X_b

$$F_{A_b^+}^+ = \rho^{-1} (\phi_b \phi_b^*)_0 + i \mu_b, \quad D_{A_b}^+ \phi_b = 0.$$

• Consider the parametrized moduli space

 $\mathcal{M} := \{(b, A_b, \phi_b) \mid (A_b, \phi_b) \text{ solves the S.W. eqs on } X_b\}/\text{gauge transformations.}$

- For generic choice of ({g_b}, {μ_b}), *M* is a compact, smooth manifold of dimension d(s_E).
- We focus on the particular case d(s_E) = 0. Then we define the family Seiberg-Witten invariant

$$\mathsf{FSW}_{\xi}(E, \mathfrak{s}_{E}) := \#\mathcal{M} \in \mathbb{Z}.$$

Here $\xi \in [B, S^{b^+(X)-1}]$ is the "chamber" for our choice of $(\{g_b\}, \{\mu_b\})$.

- Consider a smooth fiber bundle $X \hookrightarrow E \xrightarrow{p} B$.
- Pick a family Spin^c-structure \mathfrak{s}_{E} . Choose metrics $\{g_b\}_{b\in B}$ and perturbations $\{\mu_b\}_{b\in B}$ on each fiber X_b . Here $\mu_b \in \Omega^2(X_b)$.
- We study the Seiberg-Witten equations on the fiber X_b

$$F_{A_b^+}^+ = \rho^{-1} (\phi_b \phi_b^*)_0 + i \mu_b, \quad D_{A_b}^+ \phi_b = 0.$$

• Consider the parametrized moduli space

 $\mathcal{M} := \{(b, A_b, \phi_b) \mid (A_b, \phi_b) \text{ solves the S.W. eqs on } X_b\}/\text{gauge transformations.}$

- For generic choice of ({g_b}, {μ_b}), *M* is a compact, smooth manifold of dimension d(s_E).
- We focus on the particular case $d(\mathfrak{s}_E) = 0$. Then we define the family Seiberg-Witten invariant

$$\mathsf{FSW}_{\xi}(E, \mathfrak{s}_{E}) := \#\mathcal{M} \in \mathbb{Z}.$$

Here $\xi \in [B, S^{b^+(X)-1}]$ is the "chamber" for our choice of $(\{g_b\}, \{\mu_b\})$. • When B = point, we denote $\text{FSW}_{\xi}(E, \mathfrak{s}_E)$ by $\text{SW}(X, \mathfrak{s}_X)$.

• Assume (X, ω) is a symplectic 4-manifold.

- Assume (X, ω) is a symplectic 4-manifold.
- We have a canonical Spin^c-structure \mathfrak{s}_J with $c_1(\mathfrak{s}_J) = -c_1(K)$.

- Assume (X, ω) is a symplectic 4-manifold.
- We have a canonical Spin^c-structure \mathfrak{s}_J with $c_1(\mathfrak{s}_J) = -c_1(K)$.

Theorem (Taubes)

- $SW(X, \mathfrak{s}_J) = 1.$
- **2** SW(X, \mathfrak{s}) = 0 if $[\omega] \cdot c_1(\mathfrak{s}) < -[\omega] \cdot c_1(K)$

- Assume (X, ω) is a symplectic 4-manifold.
- We have a canonical Spin^c-structure \mathfrak{s}_J with $c_1(\mathfrak{s}_J) = -c_1(K)$.

Theorem (Taubes)

Assuming $b_2^+(X) > 1$, then we have

$$SW(X,\mathfrak{s}_J)=1.$$

3 SW(X,
$$\mathfrak{s}$$
) = 0 if $[\omega] \cdot c_1(\mathfrak{s}) < -[\omega] \cdot c_1(K)$

• Proved by setting the perturbation $\mu = -r\omega - iF_{A_0^t}^+$ for $r \gg 0$.

- Assume (X, ω) is a symplectic 4-manifold.
- We have a canonical Spin^c-structure \mathfrak{s}_J with $c_1(\mathfrak{s}_J) = -c_1(K)$.

Theorem (Taubes)

$$SW(X, \mathfrak{s}_J) = 1.$$

3 SW(X,
$$\mathfrak{s}$$
) = 0 if $[\omega] \cdot c_1(\mathfrak{s}) < -[\omega] \cdot c_1(K)$

- Proved by setting the perturbation $\mu = -r\omega iF_{A_{0}^{+}}^{+}$ for $r \gg 0$.
- Consider a family $X \hookrightarrow E \to B$.

- Assume (X, ω) is a symplectic 4-manifold.
- We have a canonical Spin^c-structure \mathfrak{s}_J with $c_1(\mathfrak{s}_J) = -c_1(K)$.

Theorem (Taubes)

$$SW(X, \mathfrak{s}_J) = 1.$$

3 SW(X,
$$\mathfrak{s}$$
) = 0 if $[\omega] \cdot c_1(\mathfrak{s}) < -[\omega] \cdot c_1(K)$

- Proved by setting the perturbation $\mu = -r\omega iF_{A_{0}^{+}}^{+}$ for $r \gg 0$.
- Consider a family $X \hookrightarrow E \to B$.
- Suppose $\{X_b\}$ carries a fiberwise symplectic structure $\{\omega_b\}$.

- Assume (X, ω) is a symplectic 4-manifold.
- We have a canonical Spin^c-structure \mathfrak{s}_J with $c_1(\mathfrak{s}_J) = -c_1(K)$.

Theorem (Taubes)

$$SW(X, \mathfrak{s}_J) = 1.$$

3 SW(X,
$$\mathfrak{s}$$
) = 0 if $[\omega] \cdot c_1(\mathfrak{s}) < -[\omega] \cdot c_1(K)$

- Proved by setting the perturbation $\mu = -r\omega iF_{A_0^+}^+$ for $r \gg 0$.
- Consider a family $X \hookrightarrow E \to B$.
- Suppose $\{X_b\}$ carries a fiberwise symplectic structure $\{\omega_b\}$.
- Set the perturbation $\mu_b = -r\omega_b iF^+_{A^t_{0,b}}$. When $r \gg 0$, the chamber ξ_ω is called the "symplectic chamber."

- Assume (X, ω) is a symplectic 4-manifold.
- We have a canonical Spin^c-structure \mathfrak{s}_J with $c_1(\mathfrak{s}_J) = -c_1(K)$.

Theorem (Taubes)

Assuming $b_2^+(X) > 1$, then we have

$$SW(X,\mathfrak{s}_J) = 1.$$

3 SW(X,
$$\mathfrak{s}$$
) = 0 if $[\omega] \cdot c_1(\mathfrak{s}) < -[\omega] \cdot c_1(K)$

- Proved by setting the perturbation $\mu = -r\omega iF_{A_0^{\dagger}}^+$ for $r \gg 0$.
- Consider a family $X \hookrightarrow E \to B$.
- Suppose $\{X_b\}$ carries a fiberwise symplectic structure $\{\omega_b\}$.
- Set the perturbation $\mu_b = -r\omega_b iF^+_{A^t_{0,b}}$. When $r \gg 0$, the chamber ξ_ω is called the "symplectic chamber."

Theorem (Taubes)

 $\mathsf{FSW}_{\xi_\omega}(E,\mathfrak{s}_E) = 0 \text{ if for any } b \in B \text{ we have } [\omega_b] \cdot c_1(\mathfrak{s}_E|_{X_b}) < -[\omega_b] \cdot c_1(\mathcal{K})$

• Our setting is as follows:

- Our setting is as follows:
 - $X \hookrightarrow E \to B$ has a decomposition $E_1 \cup_{B \times Y} E_2$.

- Our setting is as follows:
 - $X \hookrightarrow E \to B$ has a decomposition $E_1 \cup_{B \times Y} E_2$.
 - Here $X_1 \hookrightarrow E_1 \to B$ is general family of manifold X_1 with boundary Y.

- Our setting is as follows:
 - $X \hookrightarrow E \to B$ has a decomposition $E_1 \cup_{B \times Y} E_2$.
 - Here $X_1 \hookrightarrow E_1 \to B$ is general family of manifold X_1 with boundary Y.
 - E₂ is the product family B × X₂ of manifold X₂ with boundary −Y. We assume b⁺₂(X₂) > 1.
- Our setting is as follows:
 - $X \hookrightarrow E \to B$ has a decomposition $E_1 \cup_{B \times Y} E_2$.
 - Here $X_1 \hookrightarrow E_1 \to B$ is general family of manifold X_1 with boundary Y.
 - E₂ is the product family B × X₂ of manifold X₂ with boundary − Y. We assume b⁺₂(X₂) > 1.
 - We assume $\pi_1(B)$ acts trivially on the homology of the fibers.

- Our setting is as follows:
 - $X \hookrightarrow E \to B$ has a decomposition $E_1 \cup_{B \times Y} E_2$.
 - Here $X_1 \hookrightarrow E_1 \to B$ is general family of manifold X_1 with boundary Y.
 - E₂ is the product family B × X₂ of manifold X₂ with boundary −Y. We assume b⁺₂(X₂) > 1.
 - We assume $\pi_1(B)$ acts trivially on the homology of the fibers.
- By removing small balls, we obtain a family cobordism

$$\widetilde{W}_1 := E_1 \setminus (B \times D^4) : S^3 \to Y$$

and single cobordism

$$W_2 := X_2 \setminus D^4 : Y \to S^3.$$

- Our setting is as follows:
 - $X \hookrightarrow E \to B$ has a decomposition $E_1 \cup_{B \times Y} E_2$.
 - Here $X_1 \hookrightarrow E_1 \to B$ is general family of manifold X_1 with boundary Y.
 - E_2 is the product family $B \times X_2$ of manifold X_2 with boundary -Y. We assume $b_2^+(X_2) > 1$.
 - We assume $\pi_1(B)$ acts trivially on the homology of the fibers.
- By removing small balls, we obtain a family cobordism

$$\widetilde{W}_1 := E_1 \setminus (B \times D^4) : S^3 \to Y$$

and single cobordism

$$W_2 := X_2 \setminus D^4 : Y \to S^3.$$

• Given (family) Spin^c-structures \mathfrak{s}_{E_1} on E_1 and \mathfrak{s}_{X_2} on X_2 . We get cobordism-induced maps

$$\begin{split} &\widehat{HM}_{*}(\widetilde{W}_{1},\mathfrak{s}_{E_{1}}):\widehat{HM}_{*}(S^{3})\rightarrow\widehat{HM}_{*}(Y)\\ &\overrightarrow{HM}^{*}(W_{2},\mathfrak{s}_{X_{2}}):\widecheck{HM}^{*}(S^{3})\rightarrow\widehat{HM}^{*}(Y) \end{split}$$

Theorem (Kronheimer-Mrowka, L.)

One has $\sum_{\mathfrak{s}} \mathsf{FSW}(E,\mathfrak{s}) = \langle \widehat{HM}_*(\widetilde{W}_1,\mathfrak{s}_{E_1})(\widehat{1}), \overline{HM}^*(W_2,\mathfrak{s}_{X_2})(\widecheck{1}) \rangle$. Here $\widehat{1}$ and $\widecheck{1}$ are canonical generators of the monopole Floer (co)homology of S^3 . The sum is taken over all family Spin^c-structures \mathfrak{s} on E that satisfies $\mathfrak{s}|_{E_1} = \mathfrak{s}_{E_1}$, $\mathfrak{s}|_{E_2} = p^*(\mathfrak{s}_{X_2}), d(\mathfrak{s}_E) = 0$.

Theorem (Kronheimer-Mrowka, L.)

One has $\sum_{\mathfrak{s}} \mathsf{FSW}(E,\mathfrak{s}) = \langle \widehat{HM}_*(\widetilde{W}_1,\mathfrak{s}_{E_1})(\widehat{1}), \overline{HM}^*(W_2,\mathfrak{s}_{X_2})(\widecheck{1}) \rangle$. Here $\widehat{1}$ and $\widecheck{1}$ are canonical generators of the monopole Floer (co)homology of S^3 . The sum is taken over all family Spin^c-structures \mathfrak{s} on E that satisfies $\mathfrak{s}|_{E_1} = \mathfrak{s}_{E_1}$, $\mathfrak{s}|_{E_2} = p^*(\mathfrak{s}_{X_2}), d(\mathfrak{s}_E) = 0$.

Corollary

Assume Y is an L-space and $b_2^+(X_2) > 1$. Given a family Spin^c-stricture \mathfrak{s}_E on E and a Spin^c-structure \mathfrak{s}_X on X that satisfy the conditions $\mathfrak{s}_E|_{E_2} = p^*(\mathfrak{s}_X|_{X_2})$ and $d(\mathfrak{s}_E) = d(\mathfrak{s}_X) = 0$. Then we have

$$\mathsf{FSW}(E,\mathfrak{s}_E) = \langle c_{\frac{\dim(B)}{2}}(-\mathsf{Ind}(\not D(E,\mathfrak{s}_E))), [B] \rangle \cdot \mathsf{SW}(X,\mathfrak{s}_X)$$

if $b_2^+(X_1) = 0$. We have $FSW(E, \mathfrak{s}_E) = 0$ if $b_2^+(X_1) \neq 0$.

Theorem (Kronheimer-Mrowka, L.)

One has $\sum_{\mathfrak{s}} \mathsf{FSW}(E,\mathfrak{s}) = \langle \widehat{HM}_*(\widetilde{W}_1,\mathfrak{s}_{E_1})(\widehat{1}), \overline{HM}^*(W_2,\mathfrak{s}_{X_2})(\widecheck{1}) \rangle$. Here $\widehat{1}$ and $\widecheck{1}$ are canonical generators of the monopole Floer (co)homology of S^3 . The sum is taken over all family Spin^c-structures \mathfrak{s} on E that satisfies $\mathfrak{s}|_{E_1} = \mathfrak{s}_{E_1}$, $\mathfrak{s}|_{E_2} = p^*(\mathfrak{s}_{X_2}), d(\mathfrak{s}_E) = 0$.

Corollary

Assume Y is an L-space and $b_2^+(X_2) > 1$. Given a family Spin^c-stricture \mathfrak{s}_E on E and a Spin^c-structure \mathfrak{s}_X on X that satisfy the conditions $\mathfrak{s}_E|_{E_2} = p^*(\mathfrak{s}_X|_{X_2})$ and $d(\mathfrak{s}_E) = d(\mathfrak{s}_X) = 0$. Then we have

$$\mathsf{FSW}(E,\mathfrak{s}_E) = \langle c_{\frac{\dim(B)}{2}}(-\mathsf{Ind}(\not D(E,\mathfrak{s}_E))), [B] \rangle \cdot \mathsf{SW}(X,\mathfrak{s}_X)$$

if $b_2^+(X_1) = 0$. We have $FSW(E, \mathfrak{s}_E) = 0$ if $b_2^+(X_1) \neq 0$.

• We use this formula to compute FSW of ADE families and blow up families and use Taubes' result to show that they have no symplectic structures.

Thank you for listening.